1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.Spatiotemporal distribution of Aedes albopictus and its influencing factors in China from 2000 to 2019
Zerui JIAO ; Lei QU ; Duoquan WANG ; Yi ZHANG ; Shan LÜ
Chinese Journal of Schistosomiasis Control 2025;37(3):268-275
Objective To investigate the spatial distribution of Aedes albopictus in China at different time periods from 2000 to 2019, so as to provide insights into precise management of Ae. albopictus in China. Methods Data pertaining to the distribution of Ae. albopictus in China from 2000 to 2019 were collected through literature retrieval with terms of “Aedes albopictus”, “monitoring”, “survey”, “density”, “distribution”, and “outbreak” in national and international databases. The title and time of the publication, sampling sites, sampling time, mosquito capture methods, and mosquito species and density were extracted, and the longitude and latitude of sampling sites were obtained through Baidu Map. Meteorological element data at meteorological observation stations within China were obtained from the National Climatic Data Center of the United States, and the annual maximum temperature, annual minimum temperature, average temperature in January, average temperature in July, annual temperature range, daily temperature range and relative humidity were calculated and subjected to Kriging interpolation. Monthly cumulative precipitation grid data and monthly average temperature grid data with a resolution of 1 km for China from 2000 to 2019 were obtained from the National Tibetan Plateau Scientific Data Center, and the annual precipitation and annual average temperature were calculated cumulatively. Population density data in China from 2000 to 2019 were obtained from the WorldPop Hub, and the gross domestic product (GDP) in China was obtained from the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. The above data were divided into 5-year intervals to calculate data during the periods from 2000 to 2004, from 2005 to 2009, from 2010 to 2014, and from 2015 to 2019. Ae. albopictus distribution data were modeled in China from 2000 to 2019 and during each period with the classification random forest (RF) model, to predict the distribution of Ae. albopictus across the country and analyze the distribution of Ae. albopictus based on the seven major climate zones in China. The performance of RF models was evaluated by accuracy, precision, recall, and area under the receiver operating characteristic curve (AUC), and the importance of each feature in the RF model was evaluated with mean decrease accuracy (MDA). Results A total of 1 191 Chinese publictions and 391 English publications were retrieved, among which 580 articles provided detailed data on the sampling sites of Ae. albopictus and specific sampling years, meeting the inclusion criteria. A total of 2 234 Ae. albopictus sampling sites were included in China from 2000 to 2019, and RF modeling results showed that the overall Ae. Albopictus distribution area was mainly found in southeastern and southwestern provinces of China from 2000 to 2019, with scattered distribution in coastal areas of northeastern provinces, such as Liaoning Province. The accuracy, precision, recall and AUC of the RF model were 0.915 to 0.947, 0.933 to 0.975, 0.898 to 0.978, and 0.902 to 0.932 for the distribution of Ae. albopictus at different time periods from 2000 to 2019. Among all features in the RF models, population density was the most contributing factor to the distribution of Ae. albopictus in China, followed by GDP, and all meteorological variables contributed relatively less to the predictive power of the RF model. In China’s seven major climate zones, Ae. albopictus was almost entirely distributed in the marginal tropical humid region, the north subtropical humid region, and the warm temperate semi-humid region. The combined distribution area of these three zones accounted for 100.0% of the national distribution area from 2000 to 2004, from 2005 to 2009, and from 2010 to 2014, and 99.9% from 2015 to 2019, and the proportion of Ae. albopictus distribution area in the warm temperate semihumid region increased gradually from 20.2% to 30.2%. Conclusions Ae. albopictus is mainly distributed in the southeastern and southwestern provinces of China and is greatly influenced by population and economic factors. The warm temperate semi-humid region in China is gradually becoming a hot spot for the distribution of Ae. albopictus.
3.Association between mental health and muscle strength among Chinese adolescents aged 13-18
Chinese Journal of School Health 2025;46(9):1232-1236
Objective:
To explore the association between mental health and muscle strength among Chinese adolescents aged 13- 18, providing a theoretical foundation and intervention strategies for mental health promotion.
Methods:
Data were obtained from the 2019 Chinese National Survey on Students Constitution and Health, including 98 631 Chinese adolescents aged 13- 18. Psychological distress was assessed by using the Kessler Psychological Distress Scale (K10), and mental well being was measured with the Warwick-Edinburgh Mental Well being Scale (WEMWBS). Based on the gender and age specific Z scores of various test items [grip strength, standing long jump, pull ups (for males), and sit ups (for females)], muscle strength index (MSI) was constructed to evaluate the comprehensive level of muscle strength in adolescents. According to the Dual factor Model (DFM) of mental health, participants were categorized into four groups:troubled, symptomatic but content, vulnerable, and complete mental health. Gender differences were analyzed by using Chi-square tests, trends were tested with Cochran-Armitage tests, and multinomial Logistic regression models were applied to assess associations between muscle strength and mental health among adolescents.
Results:
In 2019, 37.4% of Chinese adolescents aged 13-18 were reported of high mental distress, and 59.9% were reported of low mental well being. Boys had significantly lower rates of high mental distress (35.3%) and low mental well being (55.6%) compared to girls (39.4%, 64.3%), and the differences were of statistical significance ( χ 2=176.13, 780.42, both P <0.05). In 2019, the rate of complete mental health among adolescents showed a downward trend with increasing age ( χ 2 trend = 258.47) and a gradual upward trend with increasing muscle strength levels ( χ 2 trend =123.14),and both boys and girls exhibited similar trends ( χ 2 trend =103.83, 168.46; 57.00 , 67.34) (all P <0.05). The results of the unordered multiclass Logistic regression model showed that after controlling for confounding factors such as age and gender, when the completely pathological group as a reference, for every 1 unit increase in MSI in adolescents, the likelihood of being in a completely mental health state increased by 29% ( OR = 1.29); for every unit increase in the Z-score for pull ups, the likelihood of being in a completely mental health state increased by 6% ( OR =1.06) among boys; for every 1 unit increase in sit up Z score, the likelihood of being in a completely mental health state increased by 19% ( OR =1.19) among girls (all P <0.05).
Conclusions
The mental health status of Chinese adolescents is not good enough. Muscle strength is positively associated with mental health.
4.Evolution and development of mental health policies for children and adolescents in China
Chinese Journal of School Health 2025;46(9):1246-1251
Objective:
To systematically review the development and changes in mental health policies within the National Outline for Children s Development in China from 1992 to 2030, providing a reference basis for future formulation of mental health policies among children and adolescent in China.
Methods:
Based on the four editions of the National Outline for Children s Development in China across different periods from 1992 to 2030, word frequency analysis was used to reveal shifts in policy priorities, and an internationally recognized framework for adolescent health policy analysis was applied to conduct a textual review.
Results:
Word frequency analysis revealed that the term "psychological" appeared 6 times in the National Outline for Children s Development in China (2001-2010) but increased to 20 times in the National Outline for Children s Development in China (2021-2030) (abbreviated as the National Outline of 2021), while the term "health" rose from 4 times in the National Outline for Children s Development Plan in China in the 1990s to 68 times in the National Outline of 2021. The scope of mental health policy interventions expanded to encompass five key areas:health, safety, education, welfare and legal protection. Textual analysis highlighted that the policies of the National Outline for Children s Development in China were demand driven, prioritized vulnerable groups and continuously broadened their coverage, emphasizing sustainability and appropriateness, and monitoring/evaluation mechanisms. By 2023, 42.3% of primary schools and 64.8% of secondary schools employed full time mental health education teachers. However, the National Outline for Children s Development in China lacked direct evidence of children and adolescents participation in policy formulation, and publicly available mental health data disaggregated by age and gender remained limited.
Conclusion
Mental health policies of children and adolescents in China have evolved from nonexistence to gradual refinement, yet institutionalized channels for youth involvement in policy development and evaluation remain insufficient, and transparency in age and gender specific mental health data needs improvement.
5.Pterostilbene inhibits the growth of esophageal squamous cell carcinoma by targeting PPARα signaling pathway and inducing ferroptosis
Yi YANG ; Wen-Jie SHI ; Shan LI ; Yue ZHANG ; Yuan-Qian MIN ; Bao-Ping LU
Chinese Pharmacological Bulletin 2024;40(12):2354-2360
Aim To study the molecular mechanism of pterostilbene(PTS)inhibiting the growth of esophage-al squamous cell carcinoma(ESCC).Methods Soft agar assay was used to detect the effect of PTS on the anchored independent growth of KYSE150.TMT-la-beled quantitative proteomics analysis was used to ana-lyze the influence of PTS on the proteome of KYSE150.Then the differentially expressed proteins(DEPs)enrichment was analyzed by GO and KEGG,and signaling pathway interactions were analyzed by STRING database.The molecular docking model of PTS and PPARα was established by computer.Trans-mission electron microscopy was used to observe the in-fluence of PTS on the morphology change of KYSE150.Western blot analysis the effects of PTS on PPARα sig-naling pathway and ferroptosis related proteins expres-sion.Results PTS inhibited the anchorage-independ-ent growth capability of KYSE150.A total of 249 DEPs were identified by proteomic analysis,including 175 up-regulated proteins and 74 down-regulated pro-teins.The DEPs enrichment analysis showed that PPAR signaling pathway was related to unsaturated fat-ty acid synthesis,pyruvate metabolism and other meta-bolic signaling pathways.PTS caused the reduction of mitochondrial volume and mitochondrial cristae of KYSE150.PTS inhibited the expression of PPARα sig-naling pathway and ferroptosis related proteins.Con-clusion PTS induced the ferroptosis of ESCC by in-hibiting PPARα signaling pathway.
6.Deep learning model based on integrated 18F-FDG PET/MRI for evaluating cerebral metabolism around cerebral infarction
Yuxin LIANG ; Bixiao CUI ; Yi SHAN ; Jie MA ; Miao ZHANG ; Jie LU
Chinese Journal of Interventional Imaging and Therapy 2024;21(11):665-669
Objective To investigate the value of deep learning(DL)model based on integrated 18F-FDG PET/MRI for evaluating cerebral metabolic status around cerebral infarction.Methods A total of 46 patients with cerebral infarction caused by unilateral internal carotid artery(ICA)or middle cerebral artery(MCA)steno-occlusion were retrospectively collected.Based on integrated 18F-FDG PET/MRI,DL model was used to automatically segment cerebral infarction area.Asymmetry index(AI)was used to evaluate the volume of reduced metabolic areas in the segmented affected frontal lobe,temporal lobe,parietal lobe,occipital lobe and cerebral hemisphere of cerebral infarction area as well as their proportions,while their correlations with National Institutes of Health stroke scale(NIHSS)score of neurological function were analyzed.Results Among 46 patients,the volume of decreased metabolism in the affected temporal lobe,parietal lobe and cerebral hemisphere was(41.35±10.52)ml,(65.58±14.82)ml and(178.89±34.23)ml,respectively,all positively correlated with NIHSS scores(rs=0.359,0.343,0.362,all P<0.05).The proportion of the reduced metabolic volume in the affected frontal lobe,temporal lobe,parietal lobe and cerebral hemisphere was(45.68±10.35)%,(42.32±10.19)%,(45.05±9.44)%and(44.11±8.63)%,respectively,all positively correlated with NIHSS scores(rs=0.344,0.340,0.439,0.393,all P<0.05).Conclusion DL model based on integrated 18F-FDG PET/MRI was of important clinical value for evaluating cerebral metabolic state around cerebral infarction.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.


Result Analysis
Print
Save
E-mail