1.Predictive value of bladder deformation index for upper urinary tract damage in neurogenic bladder patients
Ran CHANG ; Huafang JING ; Yi GAO ; Siyu ZHANG ; Yue WANG ; Juan WU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(2):231-234
ObjectiveTo assess the predictive value of the bladder deformation index (BDI) in determining upper urinary tract (UUT) damage among patients with neurogenic bladder (NB). MethodsClinical data of 132 NB patients admitted to Beijing Bo'ai Hospital from January, 2015 to December, 2018 were retrospectively analyzed. Patients were divided into UUT damage group and normal UUT group according to the presence or absence of hydronephrosis. The demographics, biochemical parameters and video-urodynamics (VUDS) findings were collected, and BDI was calculated. Receiver operating characteristic (ROC) curves were utilized to evaluate the predictive capability. ResultsThere were 54 patients in UUT damage group and 33 in normal UUT group. The course of disease, creatinine level and BDI were siginificantly different between two groups (P < 0.05), while the area under the curve were 0.686, 0.836 and 0.928, respectively. ConclusionCourse of disease, creatinine level and BDI are associated with UUT damage in NB patients, and BDI demonstrates the highest sensitivity and specificity, which may play a role in diagnosis of UUT damage.
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3.Effects of electroacupuncture at"Zusanli"and"Taichong"on gastrointestinal function and brain-gut axis in model rats with functional dyspepsia
Qiong WANG ; Yi ZHANG ; Ran ZOU ; Li ZHOU ; Min YANG ; Paidi XU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(4):570-579
Objective We aimed to investigate the effects of electroacupuncture at"Zusanli"(ST36)and"Taichong"(LR3)on gastrointestinal motility,gastrointestinal hormones,and brain-gut axis in rats with functional dyspepsia(FD).Methods 48 SD rats were randomly divided into a normal control group,a model group,a cisapride group,and an electroacupuncture group,with 12 rats in each group.A mild tail pinch stimulation combined with intermittent food deprivation was used to establish the FD rat model.Body mass,food intake,and sucrose preference rate were recorded before and after modeling to verify the success of the FD model.After modeling,the normal control group and the model group received no intervention;the cisapride group rats were administered cisapride[0.4 g/(kg·d)]by intragastric perfusion for 6 consecutive days as one course of treatment,with a rest day between each course;the electroacupuncture group rats received electroacupuncture stimulation at bilateral"Zusanli"and"Taichong"(DC,dense-sparse wave,2/100 Hz,2-5 mA.Electricity was applied for 30 min),with stimulation every 24 h for 6 consecutive times as one course of treatment,with a rest day between each course.After two courses of treatment,samples were collected to compare gastrointestinal motility indices,blood levels of gastrointestinal hormones[motilin,gastrin,serotonin(5-HT),nitric oxide(NO)],serum and tissue levels of endogenous brain-gut peptides[cholecystokinin(CCK),calcitonin gene-related peptide(CGRP),neuropeptide Y(NPY)]in the hypothalamus,gastric antrum,duodenum,colon,and protein expressions of ghrelin and substance P in the hypothalamus,spinal cord,gastric antrum,and colon.Results Body mass,food intake,and sucrose preference rate were lower of the model rats than those of the normal rats(P<0.05).Compared with the model group,rats in the electroacupuncture group and cisapride group had(i)lower gastric residual rates,higher rates of small intestinal propulsion and gastric slow wave main frequency and power(P<0.05);(ii)levels of motilin,gastrin,and 5-HT increased,while NO level decreased(P<0.05);(iii)serum CCK content increased,while CGRP and NPY levels decreased(P<0.05);(iv)CCK protein positive expression increased,while CGRP and NPY protein positive expression decreased in the hypothalamus,gastric antrum,duodenum(P<0.05);(v)ghrelin protein expressions increased,and substance P protein expression decreased in the hypothalamus,spinal cord,gastric antrum,and colon(P<0.05).There were no significant differences in these indicators between the electroacupuncture group and the cisapride group.Conclusion Electroacupuncture at"Zusanli"and"Taichong"can effectively alleviate gastrointestinal motility disorders in FD rats,regulate gastrointestinal hormone levels,reverse abnormal brain-gut peptide expression,and regulate brain-gut interaction balance.
4.Immunotherapy for Colorectal Cancer
Hao-Ran XU ; Xiao-Yi ZHAO ; He NIE ; Hui WANG ; Qing-Lin ZHANG ; Qiang ZHAN
Progress in Biochemistry and Biophysics 2024;51(10):2570-2586
Improving the prognosis of patients with colorectal cancer (CRC) holds important clinical and social significance. Immunotherapy is an emerging therapy approach for cancers, which mainly include immune checkpoint inhibitors (ICI), immune vaccine and adoptive cell therapy. ICI have achieved good clinical translation in treatment of metastatic CRC with deficient DNA mismatch repair/high microsatellite instability (dMMR/MSI-H) status. The application of some ICI, such as PD-1 inhibitors pembrolizumab and nivolumab, in this type patients have been approved by the FDA. In addition,numerous positive results are acquired in clinical trials of neoadjuvant therapy for resectable dMMR/MSI-H CRC. These results greatly bolstered the exploration enthusiasm of CRC immunotherapy. However, the proficient DNA mismatch repair/microsatellite stability (pMMR/MSS) CRC, which accounting for the vast majority in related patients, hardly benefit from ICI therapy. Various combination strategies, mainly including ICI combined with traditional chemotherapy, radiotherapy, or targeted therapy, have been attempted to alter the “cold tumors” microenvironment characteristics of pMMR/MSS CRC in clinical trials, whereas no breakthrough results were reached. Theoretically, tumor vaccines are ideal choice to break down the barrier of insufficient immune infiltration in solid tumors. However, the outcomes of related clinical trials in CRC patents are not satisfactory, and partially due to the weak specificity of the applied tumor-associated antigens. Clinical studies of adoptive cell therapy in CRC are also actively underway. The favorable efficacy of tumor-infiltrating lymphocyte, cytokine-induced killer (CIK) and dendritic cell-CIK in CRC have been confirmed, while the CAR-T and TCR-T therapies need more exploration based on screening more suitable antigens and optimizing engineering design. In this review, we made a summary based on the mainline of clinical studies related to diverse immunotherapies, so as to clarify the progress of CRC immunotherapy and provide bases for exploration of better treatment options.
5.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
6.The role of glucose metabolism reprogramming and its targeted therapeutic agents in inflammation-related diseases
Yi WEI ; Xiao-man JIANG ; Shi-lin XIA ; Jing XU ; Ya LI ; Ran DENG ; Yan WANG ; Hong WU
Acta Pharmaceutica Sinica 2024;59(3):511-519
Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases.
7.Bibliometric Analysis of Traditional Chinese Medicine Regulating Wnt Signaling Pathway
Licheng RAN ; Yi YUAN ; Hui SHANG ; Lirong CHEN ; Tong YANG ; Lei LI ; Yajun WANG
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(5):1361-1369
Objective To analyze the research status,hot directions and frontier trends of traditional Chinese medicine in the prevention and treatment of diseases by regulating Wnt signaling pathway based on bibliometrics.Methods Based on Citespace and Vosviewer bibliometric software,the literature on the regulation of Wnt signaling pathway by traditional Chinese medicine in CNKI and WoSCC was visually analyzed.Results As of April 2023,607 and 257 related literatures were published in Chinese and English respectively.Since 2008,the number of literatures published in this field has shown a fluctuating increasing trend.China is the country with the most publications;guangzhou University of Traditional Chinese Medicine and Hunan University of Traditional Chinese Medicine were the institutions with the most publications in the Chinese database,and Shanghai University of Traditional Chinese Medicine was the institution with the most publications in the English literature database.Combined with the research direction of each research team and keyword clustering and burst analysis,the research hotspots of traditional Chinese medicine regulating Wnt signaling pathway are focused on osteoporosis,osteoarthritis and renal fibrosis.Diseases such as gastric cancer and breast cancer have become emerging research directions in recent years.Electroacupuncture therapy to promote stem cell proliferation and treat neurological diseases is one of the frontier research trends in this field.The mechanism of traditional Chinese medicine regulating the interaction between Wnt and NF-kappaB signaling pathway to prevent and treat diseases has great research potential.Conclusion In recent years,the prevention and treatment of diseases by traditional Chinese medicine targeting Wnt signaling pathway has developed rapidly.Various expert teams have obtained rich research results,and the research hotspots show a diversified trend.In-depth exploration of this can provide strong evidence for the molecular mechanism of traditional Chinese medicine in the treatment of various diseases.
8.Role of Hedgehog signaling pathway in muscle bone symbiosis in osteo-sarcopenia
Yan-Dong LIU ; Qiang DENG ; Zhong-Feng LI ; Ran-Dong PENG ; Yu-Rong WANG ; Jia-Ming LI ; Ping-Yi MA ; Jian-Qiang DU
The Chinese Journal of Clinical Pharmacology 2024;40(16):2433-2437
This article elaborates on the complex cross-talk and close relationship between muscles and bones involved in this disease,as well as its pathogenesis.It also summarizes that the difficulty of its treatment lies in the need to simultaneously consider both muscles and bones.And elaborated on the key role of the Hedgehog signaling pathway in embryonic development,tissue morphology establishment,and human tissue regeneration and repair.Investigated the remodeling effect of the Hedgehog signaling pathway on skeletal muscle from three aspects:Proliferation and differentiation of muscle stem cells,precursor cell and muscle fiber generation,inhibition of inflammation,and regulation of immunity;this article elucidates the role of the Hedgehog signaling pathway in bone reconstruction from two aspects.
9.Impact of changes in cognitive load of anesthesia residents on the effectiveness of high-fidelity scenario simulation teaching
Haoyu PEI ; Yi HU ; Li WANG ; Juan DAI ; Qi SUN ; Xing ZHU ; Xiaoli RAN ; Qiuping WU ; Qingxiang MAO
Chinese Journal of Medical Education Research 2024;23(4):548-555
Objective:To investigate the influence of changes in the cognitive load of anesthesia residents on the teaching effectiveness of high-fidelity scenario simulation.Methods:Eighty-seven anesthesia residents in a grade-A tertiary hospital from February to November 2022 were divided into groups A, B, and C according to the random number method. Three cases were selected from the anesthesia crisis resource teaching case library for high-fidelity simulation training for the three groups, respectively, using the crossover design to control the order of the cases. Each round of training consisted of pre-training instruction, simulation teaching, and post-training summarization and analysis. After three rounds of simulation teaching, cognitive load, anxiety status, test scores, and non-technical skills were evaluated for all the study participants. SPSS 20.0 was used to perform analysis of variance with repeated measures and Pearson's correlation analysis.Results:All the three groups showed significantly higher cognitive load and anxiety scores during the first-round simulation training than during the second-round and third-round simulation trianing. The test scores were significantly lower in the first round [(87.07±5.66), (88.38±5.41), (89.07±6.17)] than in the second round [(95.69±2.29), (96.10±2.08), (96.07±2.60)] and the third round [(96.34±1.45), (96.38±1.50), (96.17±1.73); all P<0.05]. The non-technical skill scores were also significantly lower in the first round [(37.24±7.58), (38.69±7.27), (39.24±8.74)] than in the second round [(46.17±5.55), (47.07±5.59), (47.59±6.74)] and the third round [(47.17±5.21), (48.48±5.38), (48.24±6.83); all P<0.05]. For simulations with the same cases, the trainees showed significantly higher cognitive load and anxiety scores and significantly lower test scores and non-technical skill scores in the first round than in the second and third rounds ( P<0.05). Conclusions:Anesthesia residents have higher levels of cognitive load and anxiety in the first scenario simulation training, which can reduce learning outcomes, and repeated simulation training can reduce trainees' cognitive load and anxiety.
10.Early gait analysis after total knee arthroplasty based on artificial intelligence dynamic image recognition
Ming ZHANG ; Ya-Nan SUI ; Cheng WANG ; Hao-Chong ZHANG ; Zhi-Wei CAI ; Quan-Lei ZHANG ; Yu ZHANG ; Tian-Tian XIA ; Xiao-Ran ZU ; Yi-Jian HUANG ; Cong-Shu HUANG ; Xiang LI
China Journal of Orthopaedics and Traumatology 2024;37(9):855-861
Objective To explore early postoperative gait characteristics and clinical outcomes after total knee arthroplasty(TKA).Methods From February 2023 to July 2023,26 patients with unilateral knee osteoarthritis(KOA)were treated with TKA,including 4 males and 22 females,aged from 57 to 85 years old with an average of(67.58±6.49)years old;body mass in-dex(BMI)ranged from 18.83 to 38.28 kg·m-2 with an average of(26.43±4.15)kg·m-2;14 patients on the left side,12 pa-tients on the right side;according to Kellgren-Lawrence(K-L)classification,6 patients with grade Ⅲ and 20 patients with grade Ⅳ;the courses of disease ranged from 1 to 14 years with an average of(5.54±3.29)years.Images and videos of standing up and walking,walking side shot,squatting and supine kneeling were taken with smart phones before operation and 6 weeks after operation.The human posture estimation framework OpenPose were used to analyze stride frequency,step length,step length,step speed,active knee knee bending angle,stride length,double support phase time,as well as maximum hip flexion angle and maximum knee bending angle on squatting position.Western Ontario and McMaster Universities(WOMAC)arthritis index and Knee Society Score(KSS)were used to evaluate clinical efficacy of knee joint.Results All patients were followed up for 5 to 7 weeks with an average of(6.00±0.57)weeks.The total score of WOMAC decreased from(64.85±11.54)before op-eration to(45.81±7.91)at 6 weeks after operation(P<0.001).The total KSS was increased from(101.19±9.58)before opera-tion to(125.50±10.32)at 6 weeks after operation(P<0.001).The gait speed,stride frequency and stride length of the affected side before operation were(0.32±0.10)m·s-1,(96.35±24.18)steps·min-1,(0.72±0.14)m,respectively;and increased to(0.48±0.11)m·s 1,(104.20±22.53)steps·min-1,(0.79±0.10)m at 6 weeks after operation(P<0.05).The lower limb support time and active knee bending angle decreased from(0.31±0.38)sand(125.21±11.64)° before operation to(0.11±0.04)s and(120.01±13.35)° at 6 weeks after operation(P<0.05).Eleven patients could able to complete squat before operation,13 patients could able to complete at 6 weeks after operation,and 9 patients could able to complete both before operation and 6 weeks after operation.In 9 patients,the maximum bending angle of crouching position was increased from 76.29° to 124.11° before operation to 91.35° to 134.12° at 6 weeks after operation,and the maximum bending angle of hip was increased from 103.70° to 147.25° before operation to 118.61° to 149.48° at 6 weeks after operation.Conclusion Gait analysis technology based on artificial intelligence image recognition is a safe and effective method to quantitatively identify the changes of pa-tients'gait.Knee pain of KOA was relieved and the function was improved,the supporting ability of the affected limb was im-proved after TKA,and the patient's stride frequency,stride length and stride speed were improved,and the overall movement rhythm of both lower limbs are more coordinated.

Result Analysis
Print
Save
E-mail