1.Research progress on the impact and mechanism of neutrophil extracellular traps (NETs) components in atherosclerosis.
Xin CHEN ; Jing-Jing ZHU ; Xiao-Fan YANG ; Yu-Peng MA ; Yi-Min BAO ; Ke NING
Acta Physiologica Sinica 2025;77(1):107-119
Atherosclerosis (AS) is a prevalent clinical vascular condition and serves as a pivotal pathological foundation for cardiovascular diseases. Understanding the pathogenesis of AS has significant clinical and societal implications, aiding in the development of targeted drugs. Neutrophils, the most abundant leukocytes in circulation, assume a central role during inflammatory responses and closely interact with AS, which is a chronic inflammatory vascular disease. Neutrophil extracellular traps (NETs) are substantial reticular formations discharged by neutrophils that serve as an immune defense mechanism. These structures play a crucial role in inducing dysfunction of the vascular barrier following endothelial cell injury. Components released by NETs pose a threat to the integrity of vascular endothelium, which is essential as it acts as the primary barrier to maintain vascular wall integrity. Endothelial damage constitutes the initial stage in the onset of AS. Recent investigations have explored the intricate involvement of NETs in AS progression. The underlying structures of NETs and their active ingredients, including histone, myeloperoxidase (MPO), cathepsin G, neutrophil elastase (NE), matrix metalloproteinases (MMPs), antimicrobial peptide LL-37, alpha-defensin 1-3, and high mobility group protein B1 have diverse and complex effects on AS through various mechanisms. This review aims to comprehensively examine the interplay between NETs and AS while providing insights into their mechanistic underpinnings of NETs in this condition. By shedding light on this intricate relationship, this exploration paves the way for future investigations into NETs while guiding clinical translation efforts and charting new paths for therapeutic interventions.
Extracellular Traps/physiology*
;
Humans
;
Atherosclerosis/immunology*
;
Neutrophils/physiology*
;
Leukocyte Elastase/metabolism*
;
Peroxidase/physiology*
;
Matrix Metalloproteinases/physiology*
;
Cathepsin G/metabolism*
;
Cathelicidins
;
HMGB1 Protein/physiology*
;
Histones
;
Animals
;
Endothelium, Vascular
3.A synthetic peptide, derived from neurotoxin GsMTx4, acts as a non-opioid analgesic to alleviate mechanical and neuropathic pain through the TRPV4 channel.
ShaoXi KE ; Ping DONG ; Yi MEI ; JiaQi WANG ; Mingxi TANG ; Wanxin SU ; JingJing WANG ; Chen CHEN ; Xiaohui WANG ; JunWei JI ; XinRan ZHUANG ; ShuangShuang YANG ; Yun ZHANG ; Linda M BOLAND ; Meng CUI ; Masahiro SOKABE ; Zhe ZHANG ; QiongYao TANG
Acta Pharmaceutica Sinica B 2025;15(3):1447-1462
Mechanical pain is one of the most common causes of clinical pain, but there remains a lack of effective treatment for debilitating mechanical and chronic forms of neuropathic pain. Recently, neurotoxin GsMTx4, a selective mechanosensitive (MS) channel inhibitor, has been found to be effective, while the underlying mechanism remains elusive. Here, with multiple rodent pain models, we demonstrated that a GsMTx4-based 17-residue peptide, which we call P10581, was able to reduce mechanical hyperalgesia and neuropathic pain. The analgesic effects of P10581 can be as strong as morphine but is not toxic in animal models. The anti-hyperalgesic effect of the peptide was resistant to naloxone (an μ-opioid receptor antagonist) and showed no side effects of morphine, including tolerance, motor impairment, and conditioned place preference. Pharmacological inhibition of TRPV4 by P10581 in a heterogeneous expression system, combined with the use of Trpv4 knockout mice indicates that TRPV4 channels may act as the potential target for the analgesic effect of P10581. Our study identified a potential drug for curing mechanical pain and exposed its mechanism.
4.A dual-targeting peptide-drug conjugate based on CXCR4 and FOLR1 inhibits triple-negative breast cancer.
Kun WANG ; Cong WANG ; Hange YANG ; Gong CHEN ; Ke WANG ; Peihong JI ; Xudong SUN ; Xuegong FAN ; Jie MA ; Zhencun CUI ; Xingkai WANG ; Hao TIAN ; Dengfu WU ; Lu WANG ; Zhimin WANG ; Jiangyan LIU ; Juan YI ; Kuan HU ; Hailong ZHANG ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):4995-5009
Triple-negative breast cancer is therapeutically challenging due to the low expression of tumor markers and 'cold' tumor immunosuppressive microenvironment. Here, we present a dual-targeting peptide-drug conjugate (PDC) for tumor inhibition. Our PDC efficiently and selectively delivers cytotoxic Monomethyl Auristatin E (MMAE) into tumor cells via C-X-C chemokine receptor type 4 (CXCR4) and folate receptor 1 (FOLR1) for synergistic inhibition of growth and metastasis. Our results show that the dual-targeting PDC has potent antitumor activity in cultured human cells and several murine transplanted tumor models without apparent toxicity. The combination of dual-targeting PDC and radiotherapy modulates the tumor immunosuppressive microenvironment by increasing CD8+ T cell infiltration and attenuating the proportion of myeloid-derived suppressor and regulatory T cells. Therefore, our dual-targeting PDC represents a promising new strategy for cancer therapy that rebalances the immune system and promotes tumor regression.
5.A promising novel local anesthetic for effective anesthesia in oral inflammatory conditions through reducing mitochondria-related apoptosis.
Haofan WANG ; Yihang HAO ; Wenrui GAI ; Shilong HU ; Wencheng LIU ; Bo MA ; Rongjia SHI ; Yongzhen TAN ; Ting KANG ; Ao HAI ; Yi ZHAO ; Yaling TANG ; Ling YE ; Jin LIU ; Xinhua LIANG ; Bowen KE
Acta Pharmaceutica Sinica B 2025;15(11):5854-5866
Local anesthetics (LAs), such as articaine (AT), exhibit limited efficacy in inflammatory environments, which constitutes a significant limitation in their clinical application within oral medicine. In our prior research, we developed AT-17, which demonstrated effective properties in chronic inflammatory conditions and appears to function as a novel oral LA that could address this challenge. In the present study, we further elucidated the beneficial effects of AT-17 in acute inflammation, particularly in oral acute inflammation, where mitochondrial-related apoptosis played a crucial role. Our findings indicated that AT-17 effectively inhibited lipopolysaccharide (LPS)-induced nerve cell apoptosis by ameliorating mitochondrial dysfunction in vitro. This process involved the inhibition of mitochondrial reactive oxygen species (mtROS) production and the subsequent activation of the NRF2 pathway. Most notably, improvements in mitochondria-related apoptosis were key contributors to AT-17's inhibition of voltage-gated sodium channels. Additionally, AT-17 was shown to reduce mtROS production in nerve cells through the Na+/NCLX/ETC signaling axis. In conclusion, we have developed a novel local anesthetic that exhibits pronounced anesthetic functionality under inflammatory conditions by enhancing mitochondria-related apoptosis. This advancement holds considerable promise for future drug development and deepening our understanding of the underlying mechanisms of action.
6.Alpha-synuclein Fibrils Inhibit Activation of the BDNF/ERK Signaling Loop in the mPFC to Induce Parkinson's Disease-like Alterations with Depression.
Zhuoran MA ; Yan XU ; Piaopiao LIAN ; Yi WU ; Ke LIU ; Zhaoyuan ZHANG ; Zhicheng TANG ; Xiaoman YANG ; Xuebing CAO
Neuroscience Bulletin 2025;41(6):951-969
Depression (Dep) is one of the most common concomitant symptoms of Parkinson's disease (PD), but there is a lack of detailed pathologic evidence for the occurrence of PD-Dep. Currently, the management of symptoms from both conditions using conventional pharmacological interventions remains a formidable task. In this study, we found impaired activation of extracellular signal-related kinase (ERK), reduced levels of transcription and translation, and decreased expression of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) of PD-Dep rats. We demonstrated that the abnormal phosphorylation of α-synuclein (pS129) induced tropomyosin-related kinase receptor type B (TrkB) retention at the neuronal cell membrane, leading to BDNF/TrkB signaling dysfunction. We chose SEW2871 as an ameliorator to upregulate ERK phosphorylation. The results showed that PD-Dep rats exhibited improvement in behavioral manifestations of PD and depression. In addition, a reduction in pS129 was accompanied by a restoration of the function of the BDNF/ERK signaling loop in the mPFC of PD-Dep rats.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
alpha-Synuclein/metabolism*
;
Male
;
Prefrontal Cortex/drug effects*
;
Rats, Sprague-Dawley
;
Depression/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Rats
;
Parkinson Disease/metabolism*
;
Receptor, trkB/metabolism*
;
Phosphorylation
;
Disease Models, Animal
;
Signal Transduction
7.Multidisciplinary expert consensus on weight management for overweight and obese children and adolescents based on healthy lifestyle
HONG Ping, MA Yuguo, TAO Fangbiao, XU Yajun, ZHANG Qian, HU Liang, WEI Gaoxia, YANG Yuexin, QIAN Junwei, HOU Xiao, ZHANG Yimin, SUN Tingting, XI Bo, DONG Xiaosheng, MA Jun, SONG Yi, WANG Haijun, HE Gang, CHEN Runsen, LIU Jingmin, HUANG Zhijian, HU Guopeng, QIAN Jinghua, BAO Ke, LI Xuemei, ZHU Dan, FENG Junpeng, SHA Mo, Chinese Association for Student Nutrition & ; Health Promotion, Key Laboratory of Sports and Physical Fitness of the Ministry of Education,〖JZ〗 Engineering Research Center of Ministry of Education for Key Core Technical Integration System and Equipment,〖JZ〗 Key Laboratory of Exercise Rehabilitation Science of the Ministry of Education
Chinese Journal of School Health 2025;46(12):1673-1680
Abstract
In recent years, the prevalence of overweight and obesity among children and adolescents has risen rapidly, posing a serious threat to their physical and mental health. To provide scientific, systematic, and standardized weight management guidance for overweight and obese children and adolescents, the study focuses on the core concept of healthy lifestyle intervention, integrates multidisciplinary expert opinions and research findings,and proposes a comprehensive multidisciplinary intervention framework covering scientific exercise intervention, precise nutrition and diet, optimized sleep management, and standardized psychological support. It calls for the establishment of a multi agent collaborative management mechanism led by the government, implemented by families, fostered by schools, initiated by individuals, optimized by communities, reinforced by healthcare, and coordinated by multiple stakeholders. Emphasizing a child and adolescent centered approach, the consensus advocates for comprehensive, multi level, and personalized guidance strategies to promote the internalization and maintenance of a healthy lifestyle. It serves as a reference and provides recommendations for the effective prevention and control of overweight and obesity, and enhancing the health level of children and adolescents.
8.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.
9.Analysis of core functional components in Yinchenhao Decoction and their pathways for treating liver fibrosis
Xingmei CHEN ; Qinwen LIU ; Yi LI ; Xiaoyu ZHONG ; Qiling FAN ; Ke MA ; Liuting LUO ; Daogang GUAN ; Zhibo ZHU
Journal of Southern Medical University 2024;44(8):1508-1517
Objective To analyze the core functional component groups(CFCG)in Yinchenhao Decoction(YCHD)and their possible pathways for treating hepatic fibrosis based on network pharmacology.Methods PPI data were extracted from DisGeNET,Genecards,CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1.The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction.A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets.In cultured human hepatic stellate cells(LX-2 cells),the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay;the effects of these compounds on collagen α1(Col1a1)mRNA expression and the pathways in 20 ng/mL TGF-β1-stimulated cells were analyzed using RT-qPCR and Western blotting.Results A total of 1005 pathogenic genes,226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained.Benzyl acetate,vanillic acid,clorius,polydatin,lauric acid and ferulic acid were selected for CCK-8 verification,and they all showed minimal cytotoxicity below the concentration of 200 μmol/L.Clorius,polydatin,lauric acid and ferulic acid all effectively inhibited TGF-β1-induced LX-2 cell activation.At the concentration of 200 μmol/L,all these 4 components inhibited PI3K,p-PI3K,AKT,p-AKT,ERK,p-ERK,P38 MAPK and p-P38 MAPK expressions in TGF-β1-induced LX-2 cells.Conclusion The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate,vanillic acid,clorius,polydatin,lauric acid and ferulic acid,which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.
10.Analysis of core functional components in Yinchenhao Decoction and their pathways for treating liver fibrosis
Xingmei CHEN ; Qinwen LIU ; Yi LI ; Xiaoyu ZHONG ; Qiling FAN ; Ke MA ; Liuting LUO ; Daogang GUAN ; Zhibo ZHU
Journal of Southern Medical University 2024;44(8):1508-1517
Objective To analyze the core functional component groups(CFCG)in Yinchenhao Decoction(YCHD)and their possible pathways for treating hepatic fibrosis based on network pharmacology.Methods PPI data were extracted from DisGeNET,Genecards,CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1.The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction.A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets.In cultured human hepatic stellate cells(LX-2 cells),the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay;the effects of these compounds on collagen α1(Col1a1)mRNA expression and the pathways in 20 ng/mL TGF-β1-stimulated cells were analyzed using RT-qPCR and Western blotting.Results A total of 1005 pathogenic genes,226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained.Benzyl acetate,vanillic acid,clorius,polydatin,lauric acid and ferulic acid were selected for CCK-8 verification,and they all showed minimal cytotoxicity below the concentration of 200 μmol/L.Clorius,polydatin,lauric acid and ferulic acid all effectively inhibited TGF-β1-induced LX-2 cell activation.At the concentration of 200 μmol/L,all these 4 components inhibited PI3K,p-PI3K,AKT,p-AKT,ERK,p-ERK,P38 MAPK and p-P38 MAPK expressions in TGF-β1-induced LX-2 cells.Conclusion The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate,vanillic acid,clorius,polydatin,lauric acid and ferulic acid,which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.


Result Analysis
Print
Save
E-mail