1.Effects of Modified Guomin Decoction (加味过敏煎) on Traditional Chinese Medicine Syndromes and Quality of Life in Patients with Mild to Moderate Atopic Dermatitis of Heart Fire and Spleen Deficiency Pattern:A Randomized,Double-Blind,Placebo-Controlled Trial
Jing NIE ; Rui PANG ; Lingjiao QIAN ; Hua SU ; Yuanwen LI ; Xinyuan WANG ; Jingxiao WANG ; Yi YANG ; Yunong WANG ; Yue LI ; Panpan ZHANG
Journal of Traditional Chinese Medicine 2025;66(10):1031-1037
ObjectiveTo observe the clinical efficacy and safety of Modified Guomin Decoction (加味过敏煎, MGD) in patients with mild to moderate atopic dermatitis (AD) of the traditional Chinese medicine (TCM) pattern of heart fire and spleen deficiency, and to explore its possible mechanisms. MethodsIn this randomized, double-blind, placebo-controlled study, 72 patients with mild to moderate AD and the TCM pattern of heart fire and spleen deficiency were randomly divided into a treatment group and a control group, with 36 cases in each group. The treatment group received oral MGD granules combined with topical vitamin E emulsion, while the control group received oral placebo granules combined with topical vitamin E treatment. Both groups were treated twice daily for 4 weeks. Clinical efficacy, TCM syndrome scores, Visual Analogue Scale (VAS) for pruritus, Dermatology Life Quality Index (DLQI) scores, Scoring Atopic Dermatitis (SCORAD) and serum biomarkers, including interleukin-33 (IL-33), interleukin-1β (IL-1β), immunoglobulin E (IgE), and tumor necrosis factor-α (TNF-α) were compared before and after treatment. Safety indexes was also assessed. ResultsThe total clinical effective rates were 77.78% (28/36) in the treatment group and 38.89% (14/36) in the control group, with cure rates of 19.44% (7/36) and 2.78% (1/36), respectively. The treatment group showed significantly better clinical outcomes compared to the control group (P<0.05). The treatment group exhibited significant reductions in total TCM syndrome scores, including erythema, edema, papules, scaling, lichenification, pruritus, irritability, insomnia, abdominal distension, and fatigue scores, as well as reductions in VAS, DLQI, SCORAD, and serum IgE and IL-33 levels (P<0.05 or P<0.01). Compared to the control group, the treatment group had significantly better improvements in all indicators except for insomnia (P<0.05). No adverse events occurred in either group. ConclusionMGD is effective and safe in treating mild to moderate AD patients with heart fire and spleen deficiency pattern. It significantly alleviates pruritus, improves TCM syndromes and quality of life, and enhances clinical efficacy, possibly through modulation of immune responses.
2.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
3.Expert consensus on the deployment of DeepSeek in medical institutions
Yanlin CAO ; Jing WANG ; Yuxi LI ; Yi ZHANG ; Guangzhen ZHONG ; Ping SONG
Chinese Medical Ethics 2025;38(5):674-678
The Expert Consensus on the Deployment of DeepSeek in Medical Institutions serves as a detailed guideline for the deployment of DeepSeek in medical institutions. It was developed by experts in the fields of healthcare, hospital management, medical information, health policy, law, and medical ethics from nearly 30 leading domestic medical and academic research institutions, based on relevant domestic and international laws and regulations as well as the practices of medical institutions. It aims to provide medical institutions with a scientific, standardized, and secure deployment guideline to ensure that the application of artificial intelligence (AI) technologies in healthcare, including but not limited to DeepSeek, conforms to the unique characteristics of the healthcare industry and effectively promotes the improvement of medical service levels. From the three aspects of pre-deployment evaluation, deployment implementation, and post-deployment management and monitoring, the key factors that medical institutions should consider when introducing DeepSeek were elaborated in detail, including medical demand compatibility, technical capabilities and infrastructure, legal and ethical risks, data preparation and management, model selection and optimization, system integration and training, performance monitoring and continuous optimization, risk management and emergency response, as well as compliance review and evaluation. This provides a comprehensive deployment framework for medical institutions to ensure the safety and effectiveness of technology applications.
4.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.

Result Analysis
Print
Save
E-mail