1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Triglyceride-glucose index and homocysteine in association with the risk of stroke in middle-aged and elderly diabetic populations
Xiaolin LIU ; Jin ZHANG ; Zhitao LI ; Xiaonan WANG ; Juzhong KE ; Kang WU ; Hua QIU ; Qingping LIU ; Jiahui SONG ; Jiaojiao GAO ; Yang LIU ; Qian XU ; Yi ZHOU ; Xiaonan RUAN
Shanghai Journal of Preventive Medicine 2025;37(6):515-520
ObjectiveTo investigate the triglyceride-glucose (TyG) index and the level of serum homocysteine (Hcy) in association with the incidence of stroke in type 2 diabetes mellitus (T2DM) patients. MethodsBased on the chronic disease risk factor surveillance cohort in Pudong New Area, Shanghai, excluding those with stroke in baseline survey, T2DM patients who joined the cohort from January 2016 to October 2020 were selected as the research subjects. During the follow-up period, a total of 318 new-onset ischemic stroke patients were selected as the case group, and a total of 318 individuals matched by gender without stroke were selected as the control group. The Cox proportional hazards regression model was used to adjust for confounding factors and explore the serum TyG index and the Hcy biochemical indicator in association with the risk of stroke. ResultsThe Cox proportional hazards regression results showed that after adjusting for confounding factors, the risk of stroke in T2DM patients with 10 μmol·L⁻¹
7.Recent advances in the mechanism of insulin-like growth factor-1-mediated exercise-induced improvement of skeletal muscle atrophy.
Qian WANG ; Yi-Min HE ; Yu-Mo DONG ; Hua-Duo WU ; Yi ZHANG ; Ning JIANG
Acta Physiologica Sinica 2025;77(5):969-978
Skeletal muscle atrophy is characterized by a reduction in both the size and quantity of skeletal muscle fibers, resulting in impaired muscle strength and function. It mainly includes disuse muscle atrophy, aging muscle atrophy, denervated muscle atrophy and muscle atrophy caused by disease etc. As a cost-effective way, exercise has been widely used in the prevention and treatment of skeletal muscle atrophy, but its mechanism for improving skeletal muscle atrophy remains unclear. Recent studies have indicated that insulin-like growth factor 1 (IGF-1) plays an important role in improving muscle atrophy through exercise, in addition to promoting the survival of neurons, lowering blood sugar, and anti-inflammation. This article reviews recent findings on the mechanisms by which IGF-1 mediates exercise-induced improvement in skeletal muscle atrophy, providing a theoretical basis for the prevention and treatment of this disease.
Insulin-Like Growth Factor I/physiology*
;
Muscular Atrophy/therapy*
;
Humans
;
Exercise/physiology*
;
Muscle, Skeletal
;
Animals
;
Insulin-Like Peptides
8.Mechanism of Gegen Qinlian Decoction in treatment of ulcerative colitis through affecting bile acid synthesis.
Yi-Xuan SUN ; Jia-Li FAN ; Jing-Jing WU ; Li-Juan CHEN ; Jiang-Hua HE ; Wen-Juan XU ; Ling DONG
China Journal of Chinese Materia Medica 2025;50(10):2769-2777
Gegen Qinlian Decoction(GQD) is a classic prescription for the clinical treatment of ulcerative colitis(UC). This study, based on the differences in efficacy observed in UC mice under different level of bile acids treated with GQD, aims to clarify the impact of bile acids on UC and its therapeutic effects. It further investigates the expression of bile acid receptors in the liver of UC mice, and preliminarily reveals the mechanism through which GQD affects bile acid synthesis in the treatment of UC. A UC mouse model was established using dextran sulfate sodium(DSS) induction. The efficacy of GQD was evaluated by assessing the general condition, disease activity index(DAI) score, colon length, and histopathological changes in colon tissue via hematoxylin and eosin(HE) staining. ELISA and Western blot were used to evaluate the inflammatory response in colon tissue. The total bile acid(TBA) level and liver damage were quantified using an automatic biochemistry analyzer. The expression levels of bile acid receptors and bile acid synthetases in liver tissue were detected by Western blot and RT-qPCR. The results showed that compared with the model group, GQD treatment significantly improved the DAI score, colon shortening, and histopathological damage in UC mice. The levels of pro-inflammatory factors TNF-α and IL-6 in the colon were significantly reduced. Serum TBA levels were significantly decreased, while alkaline phosphatase(ALP) levels significantly increased. After administration of cholic acid(CA), UC symptoms in the CA + GQD group were significantly aggravated compared with the GQD group. The DAI score, degree of weight loss, colon injury, serum TBA, and liver injury markers all increased significantly. However, compared with the CA group, the CA + GQD group showed a marked reduction in TBA levels and a significant improvement in UC-related symptoms, indicating that GQD can alleviate UC damage exacerbated by CA. Further investigation into the expression of bile acid receptors and synthetases in the liver showed that under GQD treatment, the expression of farnesoid X receptor(FXR) and small heterodimer partner(SHP) significantly increased, while the expression of G protein-coupled receptor 5(TGR5) and cholesterol 7α-hydroxylase(Cyp7A1) significantly decreased. These findings suggest that GQD may affect bile acid receptors and synthetases, inhibiting bile acid synthesis through the FXR/SHP pathway to treat UC.
Animals
;
Colitis, Ulcerative/genetics*
;
Bile Acids and Salts/biosynthesis*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Humans
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Colon/metabolism*
;
Disease Models, Animal
;
Liver/metabolism*
;
Mice, Inbred C57BL
9.Comparison of short-term clinical efficacy between CO external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures.
Min-Rui FU ; Chang-Long SHI ; Yong-Zhong CHENG ; Ming-Ming MA ; Zheng-Lin NIU ; Hai-Xiang SUN ; Jing-Hua GAO ; Zhong-Kai WU ; Yi-Ming XU
China Journal of Orthopaedics and Traumatology 2025;38(1):10-17
OBJECTIVE:
To evaluate the short-term clinical efficacy of external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures (AO-23C type), based on the principles of Chinese osteosynthesis (CO).
METHODS:
Forty-eight patients with unstable distal radius fractures between January 2022 and February 2023 were retrospectively analyzed and divided into the CO external fixation group and internal fixation group. CO external fixation group consisted of 25 patients, including 7 males and 18 females, aged from 37 to 56 years old with an average of ( 52.6±11.3) years old. Among them, there were 7 patients of traffic accidents and 18 patients of falls, resulting in a total of 25 patients of closed fractures and no open fractures, the treatment was conducted using closed reduction and CO external fixation. The internal fixation group consisted of 23 patients, comprising 8 males and 15 females, age ranged from 41 to 59 years old, with an average age of(53.3±13.7) years old. Among them, 8 patients resulted from car accidents while the remaining 15 patients were caused by falls. All 23 patients were closed fractures without any open fractures observed. The technique of open reduction and internal fixation with steel plate was employed. The perioperative data, including injury-operation time, operation duration, blood loss, and length of hospital stay, were assessed in both groups. Additionally, the QuickDASH score and visual analogue scale (VAS) were evaluated. Range of motion and grip strength assessment, imaging findings such as palmar inclination angle, ulnar declination angle, radius length, articular surface step, intra-articular space measurements were also examined along with any complications.
RESULTS:
The follow-up duration ranged from 0 to 24 months, with an average duration of (16.0±3.8) months. The CO external fixation exhibited significantly shorter time from injury to operation (2.4±3.3) d vs (7.4±3.7) d, shorter operation duration (56.27±15.23) min vs (74.10±5.26) min, lower blood loss (14.52±6.54) ml vs (32.32±10.03) ml, and reduced hospitalization days (14.04±3.24 )d vs (16.45±3.05) d compared to the internal fixation group (P<0.05). The QuickDASH score at 12 months post-operation was (8.21±1.64) in the CO external fixation group, while no significant difference was observed in the internal fixation group (7.04±3.64), P>0.05. There were no statistically significant differences in VAS between two groups at 6 weeks, as well as 1 and 3 months post-surgery (P>0.05). Additionally, there were no significant disparities observed in terms of range of motion and grip strength between two groups at the 2-year follow-up after the operation (P>0.05). After 12 months of surgery, the CO external fixation group exhibited a significantly smaller palmar inclination angle (17.90±2.18) ° vs (19.87±3.21) °, reduced articular surface step (0.11±0.03) mm vs (0.17±0.02) mm, and shorter radius length (8.16±1.11) mm compared to the internal fixation group (9.59±1.02) mm, P<0.05. The ulnar deviation angle and intra-articular space did not show any significant difference between two groups (P>0.05). The reduced fell within the allowable range between the CO external fixation group (23 out of 25 cases) and the internal fixation group (21 out of 23 cases) was not statistically significant (P=0.29). There was no significant difference in complications between the two groups(P>0.05).
CONCLUSION
Both the CO external fixation and open reduction with plate internal fixation demonstrate clinical efficacy in managing unstable distal radius fractures. The CO external fixation offers advantages in shorter injury-to-operation times, reduced intraoperative blood loss, and decreased surgical durations, while radial shortening is more effectively controlled by internal fixation.
Humans
;
Male
;
Female
;
Middle Aged
;
Radius Fractures/physiopathology*
;
Adult
;
Bone Plates
;
Fracture Fixation, Internal/methods*
;
External Fixators
;
Retrospective Studies
;
Fracture Fixation/methods*
;
Wrist Fractures

Result Analysis
Print
Save
E-mail