1.Exercise Modulates Protein Acylation to Improve Cardiovascular Diseases
Feng-Yi LI ; Wen-Hua HUANG ; Jing ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1453-1467
The pathogenesis of cardiovascular diseases (CVD) is complex, and dynamic imbalances in protein acylation modification are significantly associated with the development of CVD. In recent years, most studies on exercise-regulated protein acylation modifications to improve cardiovascular function have focused on acetylation and lactylation. Protein acylation modifications are usually affected by exercise intensity. High-intensity exercise directly affects oxidative stress and cellular energy supply, such as changes in ATP and NAD+ levels; moderate-intensity exercise is often accompanied by improvements in aerobic metabolism, such as fatty acid β-oxidation and TCA cycle, which modulate mitochondrial biogenesis. The above processes may affect the acylation status of relevant regulatory enzymes and functional proteins, thereby altering their function and activity and triggering signaling cascades to adapt to exercise’s metabolic demands and stresses. Exercise regulates the levels of acylation modifications of H3K9, H3K14, H3K18, and H3K23, which are involved in regulating the transcriptional expression of genes involved in oxidative stress, glycolysis, inflammation, and hypertrophic response by altering chromatin structure and function. Exercise can regulate the acylation modification of non-histone-specific sites in the cardiovascular system involved in mitochondrial function, glycolipid metabolism, fibrosis, protein synthesis, and other biological processes, and participates in the regulation of protein activity and function by altering the stability, localization, and interaction of proteins, and ultimately works together to achieve the improvement of cardiovascular phenotypes and biological functions. Exercise affects acyl donor concentration, acyltransferase, and deacetylase expression and activity by influencing acyl donor concentration, acyltransferase, and deacetylase. Exercise regulates the abundance of acyl donors such as acetyl coenzyme A, propionyl coenzyme A, butyryl coenzyme A, succinyl coenzyme A, and lactoyl coenzyme A by promoting glucose and lipid metabolism and improving intestinal bacterial flora, which in turn affects protein acylation modification, accelerates oxidative decarboxylation of pyruvic acid in the body, and activates the energy-sensing molecule, adenosine monophosphate-activated protein kinase (AMPK), to improve cardiovascular function. Exercise may affect protein acylation modifications in the cardiovascular system by regulating the activity and expression of adenoviral E1A binding protein of 300 kDa (p300)/cyclic adenosine monophosphate response element-binding protein (CBP), general control nonderepressible 5-related N-acetyltransferases (GNAT), and alanyl-transfer t-RNA synthetase (AARS), which in turn improves cardiovascular function. The relationship between exercise and cardiovascular deacetylases has attracted much attention, with SIRT1 and SIRT3 of the silence information regulator (SIRT) family of proteins being the most studied. Exercise may exert transient or long-term stable cardiovascular protective benefits by promoting the enzymatic activity and expression of SIRT1, SIRT3, and HDAC2, inhibiting the enzymatic activity and expression of HDAC4, and mediating the deacylation of metabolic regulation-related enzymes, cytokines, and molecules of signaling pathways. This review introduces the role of protein acylation modification on CVD and the effect of exercise-mediated protein acylation modification on CVD. Based on the existing studies, it analyzes the possible mechanisms of exercise-regulated protein acylation modification to improve CVD from the perspectives of acylation modification donors, acyltransferases, and deacetylases. Deciphering the regulation of cardiovascular protein acylation and modification by exercise and exploring the essential clues to improve cardiovascular disease can enrich the theoretical basis for exercise to promote cardiovascular health. However, it is also significant for developing new cardiovascular disease prevention and treatment targets.
2.Role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 and effect of Bushen Jianpi Huoxue Decoction.
Tong-Ying CHEN ; Sai FU ; Xiao-Yun LI ; Shu-Hua LIU ; Yi-Fu YANG ; Dong-Sheng YANG ; Yun-Jie ZENG ; Yang-Bo LI ; Dan LUO ; Hong-Xing HUANG ; Lei WAN
China Journal of Chinese Materia Medica 2025;50(3):583-589
Osteoporosis(OP) is a senile bone disease characterized by an imbalance between bone remodeling and bone formation. Targeting pathogenesis of kidney deficiency, spleen deficiency, and blood stasis, Bushen Jianpi Huoxue Decoction has a significant effect on the treatment of OP by tonifying kidney, invigorating spleen, and activating blood circulation. MicroRNA(miRNA) and the anti-apoptotic protein B-cell lymphoma-2-like protein 1(BCL2L1) are closely related to bone cell metabolism. Therefore, in this study, the binding of miR-140-5p to BCL2L1 was detected by dual luciferase assay and polymerase chain reaction(PCR). After silencing or overexpressing miR-140-5p, the apoptosis, autophagy, and osteogenic function of human fetal osteoblast cell line 1.19(HFOB1.19) were observed by flow cytometry and Western blot. Bushen Jianpi Huoxue Decoction-containing serum was prepared by intragastric administration of Bushen Jianpi Huoxue Decoction in rats. Different concentrations of Bushen Jianpi Huoxue Decoction-containing serum were used to treat HFOB1.19 with or without miR-140-5p mimic. The expression of osteogenic proteins in each group was observed, and the role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 was studied, along with the effect of Bushen Jianpi Huoxue Decoction on these processes. As indicated by the dual luciferase assay, miR-140-5p bound to BCL2L1. Flow cytometry and Western blot showed that miR-140-5p promoted apoptosis and inhibited autophagy in HFOB1.19. After intervention with high, medium, and low doses of Bushen Jianpi Huoxue Decoction-medicated serum, compared with the miR-140-5p NC group, the expression of osteocalcin(OCN), osteopontin(OPN), Runt-related transcription factor 2(RUNX2), and transforming growth factor beta 1(TGF-β1) decreased in the miR-140-5p mimic group, while the expression of bone morphogenetic protein 2(BMP2) showed no significant difference under high-dose intervention. Therefore, miR-140-5p/BCL2L1 can promote apoptosis and inhibit autophagy in HFOB1.19. Bushen Jianpi Huoxue Decoction can affect the osteogenic effect of miR-140-5p through BMP2.
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Cell Line
;
bcl-X Protein/metabolism*
;
Osteoblasts/metabolism*
;
Rats
;
Osteoporosis/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Osteogenesis/drug effects*
3.Mini-barcode development based on chloroplast genome of Descurainiae Semen Lepidii Semen and its adulterants and its application in Chinese patent medicine.
Hui LI ; Yu-Jie ZENG ; Xin-Yi LI ; ABDULLAH ; Yu-Hua HUANG ; Ru-Shan YAN ; Rui SHAO ; Yu WANG ; Xiao-Xuan TIAN
China Journal of Chinese Materia Medica 2025;50(7):1758-1769
Descurainiae Semen Lepidii Semen, also known as Tinglizi, originates from Brassicaceae plants Descurainia sophia or Lepidium apetalum. The former is commonly referred to as "Southern Tinglizi(Descurainiae Semen)", while the latter is known as "Northern Tinglizi(Lepidii Semen)". To scientifically and accurately identify the origin of Tinglizi medicinal materials and traditional Chinese medicine products, this study developed a specific DNA mini-barcode based on chloroplast genome sequences. By combining the DNA mini-barcode with DNA metabarcoding technology, a method for the qualitative and quantitative identification of Tinglizi medicinal materials and Chinese patent medicines was established. In this study, chloroplast genomes of Southern Tinglizi and Northern Tinglizi and seven commonly encountered counterfeit products were downloaded from the GenBank database. Suitable polymorphic regions were identified to differentiate these species, enabling the development of the DNA mini-barcode. Using DNA metabarcoding technology, medicinal material mixtures of Southern and Northern Tinglizi, as well as the most common counterfeit product, Capsella bursa-pastoris seeds, were analyzed to validate the qualitative and quantitative capabilities of the mini-barcode and determine its minimum detection limit. Additionally, the mini-barcode was applied to Chinese patent medicines containing Tinglizi to authenticate their botanical origin. The results showed that the developed mini-barcode(psbB) exhibited high accuracy and specificity, effectively distinguishing between the two authentic origins of Tinglizi and commonly encountered counterfeit products. The analysis of mixtures demonstrated that the mini-barcode had excellent qualitative and quantitative capabilities, accurately identifying the composition of Chinese medicinal materials in mixed samples with varying proportions. Furthermore, the analysis of Chinese patent medicines revealed the presence of the adulterant species(Capsella bursa-pastoris) in addition to the authentic species(Southern and Northern Tinglizi), indicating the occurrence of adulteration in commercially available Tinglizi-containing products. This study developed a method for the qualitative and quantitative identification of multi-origin Chinese medicinal materials and related products, providing a model for research on other multi-origin Chinese medicinal materials.
DNA Barcoding, Taxonomic/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Contamination
;
Genome, Chloroplast
;
Medicine, Chinese Traditional
4.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
5.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
6.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
7.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
8.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
9.Establishment of a Bortezomib-Resistant Multiple Myeloma Xenotransplantation Mouse Model by Transplanting Primary Cells from Patients.
Yan-Hua YUE ; Yi-Fang ZHOU ; Ying-Jie MIAO ; Yang CAO ; Fei WANG ; Yue LIU ; Feng LI ; Yang-Ling SHEN ; Yan-Ting GUO ; Yu-Hui HUANG ; Wei-Ying GU
Journal of Experimental Hematology 2025;33(1):133-141
OBJECTIVE:
To explore the construction method of a resistant multiple myeloma (MM) patient-derived xenotransplantation (PDX) model.
METHODS:
1.0×107 MM patient-derived mononuclear cells (MNCs), 2.0×106 MM.1S cells and 2.0×106 NCI-H929 cells were respectively subcutaneously inoculated into NOD.CB17-Prkdcscid Il2rgtm1/Bcgen (B-NDG) mice with a volume of 100 μl per mouse to establish mouse model. The morphologic, phenotypic, proliferative and genetic characteristics of PDX tumor were studied by hematoxylin-eosin staining, immunohistochemical staining (IHC), cell cycle analysis, flow cytometry and fluorescence in situ hybridization (FISH). The sensitivity of PDX tumor to bortezomib and anlotinib monotherapy or in combination was investigated through cell proliferation, apoptosis and in vitro and in vivo experiments. The effects of anlotinib therapy on tumor blood vessel and cell apoptosis were analyzed by IHC, TUNEL staining and confocal fluorescence microscope.
RESULTS:
MM PDX model was successfully established by subcutaneously inoculating primary MNCs. The morphologic features of tumor cells from MM PDX model were similar to those of mature plasma cells. MM PDX tumor cells positively expressed CD138 and CD38, which presented 1q21 amplification, deletion of Rb1 and IgH rearrangement, and had a lower proliferative activity than MM cell lines. in vitro, PDX, MM.1S and NCI-H929 cells were treated by bortezomib and anlotinib for 24 hours, respectively. Cell viability assay showed that the IC50 value of bortezomib were 5 716.486, 1.025 and 2.775 nmol/L, and IC50 value of anlotinib were 5 5107.337, 0.706 and 5.13 μmol/L, respectively. Anlotinib treatment increased the apoptosis of MM.1S cells (P < 0.01), but did not affect PDX tumor cells (P >0.05). in vivo, there was no significant difference in PDX tumor growth between bortezomib monotherapy group and control group (P >0.05), while both anlotinib monotherapy and anlotinib combined with bortezomib effectively inhibited PDX tumor growth (both P < 0.05). The vascular perfusion and vascular density of PDX tumor were decreased in anlotinib treatment group (both P < 0.01). The apoptotic cells in anlotinib treatment group were increased compared with those in control group (P < 0.05).
CONCLUSION
Bortezomib-resistant MM PDX model can be successfully established by subcutaneous inoculation of MNCs from MM patients in B-NDG mice. This PDX model, which retains the basic biological characteristics of MM cells, can be used to study the novel therapies.
Animals
;
Bortezomib
;
Humans
;
Multiple Myeloma/pathology*
;
Mice
;
Apoptosis
;
Drug Resistance, Neoplasm
;
Cell Line, Tumor
;
Xenograft Model Antitumor Assays
;
Mice, Inbred NOD
;
Disease Models, Animal
;
Cell Proliferation
;
Transplantation, Heterologous
10.Effective Salvage Mobilization of Peripheral Blood Stem Cells with High-Dose Etoposide in Newly Diagnosed Multiple Myeloma Patients Who Failed Initial Mobilization with High-Dose Cyclophosphamide.
Yue-Qi WANG ; Shi-Hua ZHAO ; Yi MA ; Xi-Lin CHEN ; Shun-Zong YUAN ; Na-Na CHENG ; Guang-Ning SHI ; Wen-Rong HUANG ; Xiu-Bin XIAO
Journal of Experimental Hematology 2025;33(5):1380-1385
OBJECTIVE:
To explore the safety and efficacy of high-dose etoposide (VP-16) combined with recombinant human granulocyte colony-stimulating factor (rhG-CSF) as salvage mobilization for peripheral blood stem cells (PBSC) in newly diagnosed multiple myeloma (NDMM) patients.
METHODS:
From April 2021 to May 2023, eight NDMM patients who had failed to yield sufficient PBSC during initial mobilization with high-dose cyclophosphamide (CTX) combined with rhG-CSF underwent salvage mobilization with 1.2 g/m2 etoposide combined with rhG-CSF 10 μg/(kg·d). The effects and adverse reactions of initial mobilization and salvage mobilization were analyzed.
RESULTS:
For salvage mobilization and initial mobilization, the numbers of PBSC collections were 16 and 18, respectively. The mean value of total collected CD34+ cells were (11.90±5.75)×106/kg and (1.67±0.75)×106/kg (P =0.0010) in salvage mobilization group and initial mobilization group, respectively. The proportion of patients with a total collection of CD34+ cell count≥2×106/kg were 100% and 37.5% (P =0.0625), and the proportion of patients with a total collection of CD34+ cell count≥5×106/kg were 87.5% and 0% (P =0.0156) in salvage mobilization group and initial mobilization group, respectively. For five patients who underwent high-dose CTX initial mobilization but had a total CD34+ cell count < 2×106/kg, successful collection was achieved through salvage mobilization with high-dose VP-16. Salvage mobilization with high-dose VP-16 was scheduled 2-3 weeks after failure of CTX mobilization. Adverse reactions of high-dose VP-16 mobilization did not increase compared to the initial mobilization with high-dose CTX.
CONCLUSION
As a salvage mobilization regimen, VP-16 1.2 g/m2 combined with rhG-CSF is safe and highly effective in NDMM patients who failed to initial mobilization with high-dose CTX combined with rhG-CSF.
Humans
;
Multiple Myeloma/therapy*
;
Etoposide/therapeutic use*
;
Hematopoietic Stem Cell Mobilization/methods*
;
Cyclophosphamide/therapeutic use*
;
Granulocyte Colony-Stimulating Factor
;
Salvage Therapy
;
Peripheral Blood Stem Cells
;
Male
;
Middle Aged
;
Female
;
Peripheral Blood Stem Cell Transplantation

Result Analysis
Print
Save
E-mail