1.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
2.Clinical study on the treatment of traumatic osteomyelitis of the upper tibia by membrane-induced technique combined with gastrocnemius muscle flap transposition.
Yi-Yang LIU ; Yi-Hang LU ; Qiong-Lin CHEN ; Bing-Yuan LIN ; Hai-Yong REN ; Kai HUANG ; Yang ZHANG ; Qiao-Feng GUO
China Journal of Orthopaedics and Traumatology 2025;38(9):937-944
OBJECTIVE:
To explore clinical efficacy of membrane-induced technique combined with gastrocnemius muscle flap transposition in treating traumatic osteomyelitis of the upper tibia.
METHODS:
A retrospective analysis was conducted on 7 patients with traumatic osteomyelitis of the upper tibia who were treated with membrane-induced technique combined with gastrocnemius muscle flap transposition from January 2022 to December 2023. Among them, there were 4 males and 3 females; aged from 29 to 57 years old; 4 patients were treated after open fracture, 2 patients were treated after closed fracture, and 1 patient was treated after scalding; the courses of disease ranges from 2 weeks to 8 years; sinus tracts were present in all patients, and the lesion range of the tibia ranged from 5 to 9 cm. The results of deep tissue bacterial culture showed that 2 patients were negative, 3 patients were staphylococcus aureus, 1 patient was methicillin-resistant staphylococcus aureus, and 1 patient was pseudomonas aeruginosa and 1 patient was klebsiella pneumoniae. After debridement, the range of bone defect ranged from 8 to 12 cm, and the cortical defect accounted for approximately 30% of the circumference. The area of soft tissue defect ranged from 8.0 cm×2.0 cm to 10.0 cm×6.0 cm. At the first stage, vancomycin-loaded/meropenem/gentamicin-loaded bone cement was implanted. The gastrocnemius muscle flap was repositioned to cover the wound surface and free skin grafting was performed. After an interval of 7 to 10 weeks, the stageⅡsurgery was performed to remove bone cement. Autologous iliac bone mixed with vancomycin/gentamicin and calcium sulfate artificial bone was transplanted, and the wound was sutured. One patient retained the original internal plants, one patient removed the internal plants and replaced them with steel plate external fixation, one patient replaced the internal plants and added steel plate external fixation, and three patients were simply fixed with steel plate external fixation. One year after operation, the recovery of knee joint and ankle joint functions was evaluated by using Hospital for Special Surgery (HSS) knee joint score and Kofoed ankle joint function score respectively.
RESULTS:
All patients had their wounds closed simultaneously with bone cement implantation and healed well. All patients were followed up for 12 to 17 months after operation, and satisfactory bone healing was achieved at 6 months after stageⅡsurgery. Twelve months after operation, all patients had good bone healing without obvious limping was observed when walking. At 12 months after operation HSS knee joint score ranged from 93 to 100 points, and Kofoed ankle function score ranged from 96 to 100 points.
CONCLUSION
For traumatic osteomyelitis of the upper tibia, a staged treatment plan combining membrane-induced technique and gastrocnemius flap transposition on the basis of thorough debridement could safely cover the wound surface, effectively control bone infection and achieve satisfactory bone healing, without adverse effects on limb function.
Humans
;
Male
;
Female
;
Middle Aged
;
Osteomyelitis/surgery*
;
Adult
;
Surgical Flaps
;
Retrospective Studies
;
Tibia/injuries*
;
Muscle, Skeletal/surgery*
3.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
4.Deubiquitinase JOSD2 alleviates colitis by inhibiting inflammation via deubiquitination of IMPDH2 in macrophages.
Xin LIU ; Yi FANG ; Mincong HUANG ; Shiliang TU ; Boan ZHENG ; Hang YUAN ; Peng YU ; Mengyao LAN ; Wu LUO ; Yongqiang ZHOU ; Guorong CHEN ; Zhe SHEN ; Yi WANG ; Guang LIANG
Acta Pharmaceutica Sinica B 2025;15(2):1039-1055
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which increases the incidence of colorectal cancer (CRC). In the pathophysiology of IBD, ubiquitination/deubiquitination plays a critical regulatory function. Josephin domain containing 2 (JOSD2), a deubiquitinating enzyme, controls cell proliferation and carcinogenesis. However, its role in IBD remains unknown. Colitis mice model developed by dextran sodium sulfate (DSS) or colon tissues from individuals with ulcerative colitis and Crohn's disease showed a significant upregulation of JOSD2 expression in the macrophages. JOSD2 deficiency exacerbated the phenotypes of DSS-induced colitis by enhancing colon inflammation. DSS-challenged mice with myeloid-specific JOSD2 deletion developed severe colitis after bone marrow transplantation. Mechanistically, JOSD2 binds to the C-terminal of inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) and preferentially cleaves K63-linked polyubiquitin chains at the K134 site, suppressing IMPDH2 activity and preventing activation of nuclear factor kappa B (NF-κB) and inflammation in macrophages. It was also shown that JOSD2 knockout significantly exacerbated increased azoxymethane (AOM)/DSS-induced CRC, and AAV6-mediated JOSD2 overexpression in macrophages prevented the development of colitis in mice. These outcomes reveal a novel role for JOSD2 in colitis through deubiquitinating IMPDH2, suggesting that targeting JOSD2 is a potential strategy for treating IBD.
5.Sub-committee of Anesthesiology of Guangzhou Integrated Traditional Chinese and Western Medicine Society.
Yi LU ; Cunzhi LIU ; Wujun GENG ; Xiaozhen ZHENG ; Jingdun XIE ; Guangfang ZHANG ; Chao LIU ; Yun LI ; Yan QU ; Lei CHEN ; Xizhao HUANG ; Hang TIAN ; Yuhui LI ; Hongxin LI ; Heying ZHONG ; Ronggui TAO ; Jie ZHONG ; Yue ZHUANG ; Junyang MA ; Yan HU ; Jian FANG ; Gaofeng ZHAO ; Jianbin XIAO ; Weifeng TU ; Jiaze SUN ; Yuting DUAN ; Bao WANG
Journal of Southern Medical University 2025;45(8):1800-1808
OBJECTIVES:
To explore the efficacy of DSA-guided intrathecal drug delivery system combined with Zi Wu Liu Zhu Acupoint Therapy for management of cancer pain and provide reference for its standardized clinical application. Methods and.
RESULTS:
Recommendations were formulated based on literature review and expert group discussion, and consensus was reached following expert consultation. The consensus recommendations are comprehensive, covering the entire treatment procedures from preoperative assessment and preparation, surgical operation process, postoperative management and traditional Chinese medicine treatment to individualized treatment planning. The study results showed that the treatment plans combining traditional Chinese with Western medicine effectively alleviated cancer pain, reduced the use of opioid drugs, and significantly improved the quality of life and enhanced immune function of the patients. Postoperative follow-up suggested good treatment tolerance among the patients without serious complications.
CONCLUSIONS
The formulated consensus is comprehensive and can provide reference for clinicians to use DSA-guided intrathecal drug delivery system combined with Zi Wu Liu Zhu Acupoint Therapy. The combined treatment has a high clinical value with a good safety profile for management of cancer pain.
Humans
;
Medicine, Chinese Traditional
;
Cancer Pain/therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Drug Delivery Systems
;
Pain Management/methods*
;
China
6.Targeted screening and profiling of massive components of colistimethate sodium by two-dimensional-liquid chromatography-mass spectrometry based on self-constructed compound database.
Xuan LI ; Minwen HUANG ; Yue-Mei ZHAO ; Wenxin LIU ; Nan HU ; Jie ZHOU ; Zi-Yi WANG ; Sheng TANG ; Jian-Bin PAN ; Hian Kee LEE ; Yao-Zuo YUAN ; Taijun HANG ; Hai-Wei SHI ; Hongyuan CHEN
Journal of Pharmaceutical Analysis 2025;15(2):101072-101072
In-depth study of the components of polymyxins is the key to controlling the quality of this class of antibiotics. Similarities and variations of components present significant analytical challenges. A two-dimensional (2D) liquid chromatography-mass spectrometr (LC-MS) method was established for screening and comprehensive profiling of compositions of the antibiotic colistimethate sodium (CMS). A high concentration of phosphate buffer mobile phase was used in the first-dimensional LC system to get the components well separated. For efficient and high-accuracy screening of CMS, a targeted method based on a self-constructed high resolution (HR) mass spectrum database of CMS components was established. The database was built based on the commercial MassHunter Personal Compound Database and Library (PCDL) software and its accuracy of the compound matching result was verified with six known components before being applied to genuine sample screening. On this basis, the unknown peaks in the CMS chromatograms were deduced and assigned. The molecular formula, group composition, and origins of a total of 99 compounds, of which the combined area percentage accounted for more than 95% of CMS components, were deduced by this 2D-LC-MS method combined with the MassHunter PCDL. This profiling method was highly efficient and could distinguish hundreds of components within 3 h, providing reliable results for quality control of this kind of complex drugs.
8.Based on supramolecular chemistry to explore the scientific connotation of predecocting gypsum in Maxingshigan decoction preliminarily
Yao-zhi ZHANG ; Shu-chang YAO ; Lu-ping YANG ; Yi-hang ZHAO ; An-qi XU ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(6):1828-1840
It has gradually become a consensus in the industry that the traditional Chinese medicine gypsum should be decocted first, but the understanding of decocting method is not completely unified in the works of doctors since ancient times, and there are occasional disputes about whether it is necessary to decocting first. In this study, the phase determination, physical and chemical characterization, qualitative and quantitative analysis of inorganic and organic components of the decoctions of herbal pairs and the whole prescription Maxingshigan decoction with gypsum as the center, and the pre-decoctions and co-decoctions of them were carried out to explore the scientific connotation of the pre-decoctions of gypsum. Results show that decoction phases were different between the co-decoctions and pre-decoctions of licorice-gypsum (Gancao-Shigao, GC-SG), ephedra-gypsum (Mahuang-Shigao, MH-SG) and almond-gypsum (Xingren-Shigao, XR-SG). The results of the micromorphology, particle size and zeta potential of herbal pairs and prescription (Quanfang, QF) showed that the supramolecular particles in pre-decoctions were smaller, more uniform and more stable than the co-decoctions. The results of organic components analysis showed that different cooking methods did not change the organic composition and content. ICP-OES results showed that the content of inorganic components in pre-decoctions was higher than in co-decoctions for the same boiling time of gypsum. The IR results showed that the pre-decoctions had stronger chemical functional group effect than the co-decoctions. To sum up, compared with the co-decoction, the pre-decoction of gypsum has different phase state and chemical composition interaction, and the difference of inorganic composition is an important material basis affecting the change of phase state compared with the co-decoction. It indicates that the material basis of traditional Chinese medicine decoction is indeed different whether gypsum is decocted first or not, which can provide a basis for the clinical application of decocted gypsum.
9.Research progress on carrier-free and carrier-supported supramolecular nanosystems of traditional Chinese medicine anti-tumor star molecules
Zi-ye ZANG ; Yao-zhi ZHANG ; Yi-hang ZHAO ; Xin-ru TAN ; Ji-chang WEI ; An-qi XU ; Hong-fei DUAN ; Hong-yan ZHANG ; Peng-long WANG ; Xue-mei HUANG ; Hai-min LEI
Acta Pharmaceutica Sinica 2024;59(4):908-917
Anti-tumor traditional Chinese medicine has a long history of clinic application, in which the star molecules have always been the hotspot of modern drug research, but they are limited by the solubility, stability, targeting, bioactivity or toxicity of the monomer components of traditional Chinese medicine anti-tumor star molecules and other pharmacokinetic problems, which hinders the traditional Chinese medicine anti-tumor star molecules for further clinical translation and application. Currently, the nanosystems prepared by supramolecular technologies such as molecular self-assembly and nanomaterial encapsulation have broader application prospects in improving the anti-tumor effect of active components of traditional Chinese medicine, which has attracted extensive attention from scholars at home and abroad. In this paper, we systematically review the research progress in preparation of supramolecular nano-systems from anti-tumor star molecule of traditional Chinese medicine, and summarize the two major categories and ten small classes of carrier-free and carrier-based supramolecular nanosystems and their research cases, and the future development direction is put forward. The purpose of this paper is to provide reference for the research and clinical transformation of using supramolecular technology to improve the clinical application of anti-tumor star molecule of traditional Chinese medicine.
10.Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
Yang YI ; Wenzhe LI ; Kefang LIU ; Heng XUE ; Rong YU ; Meng ZHANG ; Yang-Oujie BAO ; Xinyuan LAI ; Jingjing FAN ; Yuxi HUANG ; Jing WANG ; Xiaomeng SHI ; Junhua LI ; Hongping WEI ; Kuanhui XIANG ; Linjie LI ; Rong ZHANG ; Xin ZHAO ; Xue QIAO ; Hang YANG ; Min YE
Journal of Pharmaceutical Analysis 2024;14(1):115-127
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016 pM.The mechanism was related to binding with Y453 of RBD deter-mined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quan-tum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)path-ways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.

Result Analysis
Print
Save
E-mail