1.Role of radiotherapy in extensive-stage small cell lung cancer after durvalumab-based immunochemotherapy: A retrospective study.
Lingjuan CHEN ; Yi KONG ; Fan TONG ; Ruiguang ZHANG ; Peng DING ; Sheng ZHANG ; Ye WANG ; Rui ZHOU ; Xingxiang PU ; Bolin CHEN ; Fei LIANG ; Qiaoyun TAN ; Yu XU ; Lin WU ; Xiaorong DONG
Chinese Medical Journal 2025;138(17):2130-2138
BACKGROUND:
The purpose of this study was to evaluate the safety and efficacy of subsequent radiotherapy (RT) following first-line treatment with durvalumab plus chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC).
METHODS:
A total of 122 patients with ES-SCLC from three hospitals during July 2019 to December 2021 were retrospectively analyzed. Inverse probability of treatment weighting (IPTW) analysis was performed to address potential confounding factors. The primary focus of our evaluation was to assess the impact of RT on progression-free survival (PFS) and overall survival (OS).
RESULTS:
After IPTW analysis, 49 patients received durvalumab plus platinum-etoposide (EP) chemotherapy followed by RT (Durva + EP + RT) and 72 patients received immunochemotherapy (Durva + EP). The median OS was 17.2 months vs . 12.3 months (hazard ratio [HR]: 0.38, 95% confidence interval [CI]: 0.17-0.85, P = 0.020), and the median PFS was 8.9 months vs . 5.9 months (HR: 0.56, 95% CI: 0.32-0.97, P = 0.030) in Durva + EP + RT and Durva + EP groups, respectively. Thoracic radiation therapy (TRT) resulted in longer OS (17.2 months vs . 14.7 months) and PFS (9.1 months vs . 7.2 months) compared to RT directed to other metastatic sites. Among patients with oligo-metastasis, RT also showed significant benefits, with a median OS of 17.4 months vs . 13.7 months and median PFS of 9.8 months vs . 5.9 months compared to no RT. Continuous durvalumab treatment beyond progression (TBP) prolonged OS compared to patients without TBP, in both the Durva + EP + RT (NA vs . 15.8 months, HR: 0.48, 95% CI: 0.14-1.63, P = 0.238) and Durva + EP groups (12.3 months vs . 4.3 months, HR: 0.29, 95% CI: 0.10-0.81, P = 0.018). Grade 3 or 4 adverse events occurred in 13 (26.5%) and 13 (18.1%) patients, respectively, in the two groups; pneumonitis was mostly low-grade.
CONCLUSION
Addition of RT after first-line immunochemotherapy significantly improved survival outcomes with manageable toxicity in ES-SCLC.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Lung Neoplasms/therapy*
;
Aged
;
Antibodies, Monoclonal/therapeutic use*
;
Adult
;
Immunotherapy/methods*
;
Aged, 80 and over
2.Review of chemical constituents, pharmacological effects, and quality control status of Eucommiae Cortex and prediction of its Q-markers.
Meng-Fan PENG ; Bao-Song LIU ; Pei-Pei YAN ; Cai-Xia LI ; Xiao-Fang ZHANG ; Yi ZHENG ; Ya-Gang SONG ; Tong LIU ; Lei YANG ; Ming-San MIAO
China Journal of Chinese Materia Medica 2025;50(4):946-958
Eucommiae Cortex, the dried bark of Eucommia ulmoides( Eucommiaceae), has both medicinal and edible values.Modern research has shown that Eucommiae Cortex contains various components such as flavonoids, lignans, iridoids, phenolic acids,terpenoids, and steroids, which have anti-osteoporosis, antioxidant, anti-inflammatory, blood glucose-lowering, and gastrointestinal tract-protecting effects. Eucommiae Cortex has applications in multiple fields such as healthcare, industry, and animal husbandry,demonstrating broad development prospects. This article reviews the chemical constituents, pharmacological effects, and quality control status of Eucommiae Cortex. Furthermore, according to the concept of quality marker(Q-marker), this article predicts the Q-markers of Eucommiae Cortex from traditional medicinal properties, traditional medicinal effects, new medicinal effects, measurability of chemical components, compatibility, harvesting periods, and geographical origins. The components such as pinoresinol diglucoside,chlorogenic acid, caffeic acid, quercetin, baicalein, baicalin, olivil, coniferyl ferulate, and kaempferol can be used as Q-markers for Eucommiae Cortex, which provide reference for establishing a systematic quality control system for Eucommiae Cortex.
Eucommiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Quality Control
;
Humans
;
Animals
3.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
4.IDH1R132H Mutant Glioma and Its Compensatory Mechanisms for Maintaining Telomeres
Si-Xiang YAN ; Yi-Fan LI ; Yao LI ; Yi-Xuan LI ; Xiang-Xiu LI ; Jin-Kai TONG ; Shu-Ting JIA ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2024;51(11):2845-2852
Isocitrate dehydrogenase 1 (IDH1) R132H is the most common mutated gene in grade II-III gliomas and oligodendrogliomas. Instead of activating telomerase (a reverse transcriptase which using RNA as a template to extend telomere length), the majority of IDH1R132H mutant glioma maintain telomere length through an alternative mechanism that relies on homologous recombination (HR), which is known as alterative lengthening of telomere (ALT).The phenotype of ALT mechanism include: ALT associated promyelocytic leukemia protein (PML) bodies (APBs); extrachromosomal telomeric DNA repeats such as C- and T-loops; telomeric sister chromatid exchange (T-SCE), etc. The mechanism of ALT activation is not fully understood. Recent studies have shown that mutation IDH1 contributes to ALT phenotype in glioma cells in at least three key ways. Firstly, the IDH1R132H mutation mediates RAP1 down-regulation leading to telomere dysfunction, thus ensuring persistent endogenous telomeric DNA damage, which is important for ALT activation. Spontaneous DNA damage at telomeres may provide a substrate for mutation break-induced replication (BIR)‑mediated ALT telomere lengthening, and it has been demonstrated that RAP1 inhibits telomeric repeat-containing RNA, transcribed from telomeric DNA repeat sequences (TERRA) transcription to down-regulate ALT telomere DNA replication stress and telomeric DNA damage, thereby inhibiting ALT telomere synthesis. Similarly, in ALT cells, knockdown of telomere-specific RNaseH1 nuclease triggers TERRA accumulation, which leads to increased replication pressure. Overexpression of RNaseH1, on the other hand, attenuates the recombination capacity of ALT telomeres, leading to telomere depletion, suggesting that RAP1 can regulate the level of replication pressure and thus ALT activity by controlling TERRA expression. Secondly, the IDH1R132H also alters the preference of the telomere damage repair pathway by down-regulating XRCC1, which inhibits the alternative non-homologous end joining (A-NHEJ) pathway at telomeres and alters cellular preference for the HR pathway to promote ALT. Finally, the IDH1R132H has a decreased affinity for isocitric acid and NADP+ and an increased affinity for α ketoglutarate (α‑KG) and NADPH, so that the mutant IDH1R132H catalyzes the hydrogenation of α‑KG to produce 2-hydroxyglutarate (2-HG)in a NADPH-dependent manner. Because 2-HG is structurally similar to α‑KG, which maintains the trimethylation level of H3k9me3 by competitively inhibiting the activity of the α‑KG-dependent histone demethylase KDM4B, and recruits heterochromatin protein HP1α to heterochromatinize telomeres, and promote ALT phenotypes in cooperation with the inactivating of ATRX. In addition, it has been shown that APBs contain telomeric chromatin, which is essentially heterochromatin, and HP1α is directly involved in the formation of APBs. Based on these studies, this article reviews the mechanism of IDH1R132H mediated telomere dysfunction and the preference of DNA repair pathway at telomeres in cooperate with ATRX loss to promote ALT, which may provide references for clinical targeted therapy of IDH1R132H mutant glioma.
5.Development of analgesic drugs targeting Nav1.7: advances in clinical trials and discovery of selective inhibitors
Rui HAN ; Yi-lin CAI ; Xiao-tong ZHENG ; Fan-qi LIN ; Fan ZHANG
Acta Pharmaceutica Sinica 2024;59(9):2417-2428
The voltage-gated sodium channel subtype Nav1.7 is highly expressed in nociceptive sensory neurons and is a key pathogenic target in several human hereditary pain syndromes. In recent years, a large number of studies have shown that Nav1.7 plays an important role in inflammatory, neuropathic, and nociceptive pain. Therefore, targeting Nav1.7 is a new strategy and hotspot for the development of novel analgesics. This review introduces the structure and function of Nav1.7, its regulatory role in pain, highlights the development progress of small-molecule Nav1.7 inhibitors in clinical trials, and analyzes the preclinical development of highly specific Nav1.7 inhibitors, with a view to providing reference for the development of Nav1.7 analgesic drugs.
6.Analysis of influencing factors of perioperative ischemic stroke in non-cardiac and non-neurosurgical surgeries
Ya-Zhen BAI ; Tong-Tong ZHENG ; Meng-Nan FAN ; Yi-Ru SHANG ; Gan-Qin DU ; Qi-Zhi FU
Medical Journal of Chinese People's Liberation Army 2024;49(10):1117-1122
Objective To explore the incidence and risk factors of perioperative ischemic stroke in non-cardiac and non-neurosurgical surgeries and its correlation with preoperative risk assessment of cerebrovascular events,so as to guide perioperative risk management.Methods A retrospective study was conducted on 40 patients aged≥18 years who underwent non-cardiac and non-neurosurgical surgeries and experienced perioperative ischemic stroke in the First Affiliated Hospital of Henan University of Science and Technology from January 2015 to January 2022,forming the stroke group.A control group of 160 patients without perioperative ischemic stroke was selected in a 1:4 case-control ratio,matched for gender,age,date of operation,and the surgeon.Clinical data and preoperative risk assessment of cerebrovascular events(including the single or combined application of head CT/MRI,transcranial Doppler ultrasound,carotid ultrasound,and neurological consultation)of the two groups of patients were collected and statistically analyzed.Multiple logistic regression analysis was used to identify risk factors associated with perioperative ischemic stroke.Results The incidence of perioperative ischemic stroke was 0.042%.Multiple logistic analysis results showed that hypertension(OR=7.858,95%CI 2.175-28.388,P=0.002),hyperlipidemia(OR=4.457,95%CI 1.320-15.049,P=0.016),renal insufficiency(OR=8.277,95%CI 1.480-46.282,P=0.016),and intraoperative hypotension(OR=3.862,95%CI 1.211-12.317,P=0.022)were independent risk factors for perioperative ischemic stroke in non-cardiac and non-neurological surgeries;preoperative cerebrovascular risk assessment(OR=0.130,95%CI 0.031-0.542,P=0.005)was a protective factor against it.Conclusions The incidence of perioperative ischemic stroke in non-cardiac and non-neurosurgical surgery is low but has a poor prognosis.Hypertension,hyperlipidemia,renal insufficiency,and postoperative hypotension are risk factors for perioperative ischemic stroke,while preoperative cerebrovascular event risk assessment is beneficial to reducing its incidence.
7.Preliminary exploration of the effect and mechanism of verbascoside against acute lung injury by network pharmacology and molecular docking
Hao YIN ; Tong-Tong GAO ; Yi LEI ; Wen-Yan QIN ; Jun-Bai FAN
Medical Journal of Chinese People's Liberation Army 2024;49(10):1174-1183
Objective To investigate the molecular mechanism of verbascoside against acute lung injury(ALI)by network pharmacology and molecular docking methods,and to validate the findings experimentally.Methods The 2D structure of verbascoside was obtained from the Pubchem database.Active ingredient targets of verbascoside were acquired from Pharmmapper database and Swiss Target Prediction database.Active component targets of ALI were acquired from datebase such as Gene Cards,OMIM,and DisGeNET.Common targets between verbascoside and ALI were determined by overlapping these sets.PPI network for potential targets was constructed using String database and Cytoscape software.The intersection targets were imported into the DAVID database for enrichment analysis of GO biological processes,KEGG signaling pathway and the pathway target genes.Molecular docking between verbascoside and core targets was performed using Autodock vina software.The mRNA expression level of core genes was validated using real-time quantitative PCR(RT-qPCR),and the expression of related proteins was detected using Western blotting.Results A total of 150 target genes of verbascoside against ALI were screened,and the key targets of verbascoside against ALI mainly involve pathways such as Rap1 signaling pathway,PI3K-Akt signaling pathway and MAPK signaling pathway.Verbascoside docked well with the core target molecules.RT-qPCR results showed that,compared with the control group,the mRNA expression levels of HSP90AA1,ALB,TP53,TNF,INS,and HRAS were significantly decreased in cells after the effect of verbascoside(P<0.05);Western blotting indicated that,compared with the model group,verbascoside treatment significantly reduced the expression of p-Akt,p-p38,and p-ERK proteins(P<0.05).Conclusion Verbascoside could inhibit MAPK,Rap1 and PI3K/Akt signaling pathways to exert its anti-ALI effects.
9.Incretin-based therapy in the management of metabolic dysfunction-associated steatotic liver disease (MASLD): one piece of the puzzle: Editorial on “Comparison of glucagon-like peptide-1 receptor agonists and thiazolidinediones on treating nonalcoholic fatty liver disease: A network meta-analysis”
Tian-Yi REN ; Mohammed ESLAM ; Jian-Gao FAN
Clinical and Molecular Hepatology 2024;30(4):649-652

Result Analysis
Print
Save
E-mail