1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.HPLC method for the simultaneous determination of hydroxyphenyl esters and quaternary ammonium bacteriostatic agents in eye drops
Jin GAO ; Dan HU ; Yi BAO ; Xiaocui YU ; Zexin WANG ; Jing LIU ; Guiying ZHANG ; Yingying ZHAO ; Zhenyu CAO ; Chunpu LI ; Xiaoxu HONG
Drug Standards of China 2024;25(3):234-243
Objective:To establish a general method for the simultaneous determination of hydroxyphenyl esters and quaternary ammonium bacteriostatic agents in eye drops.Methods:The chromatographic analysis was per-formed on an Agilent C18 column(4.6 mm ×250 mm,5 μm)with 1%triethylamine solution(pH adjusted to 5.0 with phosphoric acid)as mobile phase A and methanol as mobile phase B.Gradient elution was performed at col-umn temperature of 40 ℃.The detection wavelength was 214 nm,the flow rate was 1 mL·min-1,and the injec-tion volume was 20 μL.Results:Methylparaben,ethylparaben,propylparaben,butylparaben,benzalkonium chlo-ride and benzalkonium bromide were 0.11-559.0,0.10-513.0,0.10-258.8,0.11-270.5,1.07-537.0 and 1.03-512.8 μg·mL-1,respectively.The linear range was good(r>0.999).The average recoveries of meth-ylparaben,benzalkonium bromide and benzalkonium chloride were 104.7%(RSD=1.3%),102.6%(RSD=1.1%)and 100.9%(RSD=1.1%),respectively.The contents of bacteriostatic agent in 100 batches of eye drops from 36 varieties of 12 enterprises were determined,and the accurate results were obtained.Conclusion:This meth-od provides a reference for the content quality control and safety evaluation of bacteriostatic agents in eye drops.
7.Background, design, and preliminary implementation of China prospective multicenter birth cohort
Si ZHOU ; Liping GUAN ; Hanbo ZHANG ; Wenzhi YANG ; Qiaoling GENG ; Niya ZHOU ; Wenrui ZHAO ; Jia LI ; Zhiguang ZHAO ; Xi PU ; Dan ZHENG ; Hua JIN ; Fei HOU ; Jie GAO ; Wendi WANG ; Xiaohua WANG ; Aiju LIU ; Luming SUN ; Jing YI ; Zhang MAO ; Zhixu QIU ; Shuzhen WU ; Dongqun HUANG ; Xiaohang CHEN ; Fengxiang WEI ; Lianshuai ZHENG ; Xiao YANG ; Jianguo ZHANG ; Zhongjun LI ; Qingsong LIU ; Leilei WANG ; Lijian ZHAO ; Hongbo QI
Chinese Journal of Perinatal Medicine 2024;27(9):750-755
China prospective multicenter birth cohort (Prospective Omics Health Atlas birth cohort, POHA birth cohort) study was officially launched in 2022. This study, in collaboration with 12 participating units, aims to establish a high-quality, multidimensional cohort comprising 20 000 naturally conceived families and assisted reproductive families. The study involves long-term follow-up of parents and offspring, with corresponding biological samples collected at key time points. Through multi-omics testing and analysis, the study aims to conduct multi-omics big data research across the entire maternal and infant life cycle. The goal is to identify new biomarkers for maternal and infant diseases and provide scientific evidence for risk prediction related to maternal diseases and neonatal health.
8.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Safety and efficacy of ultrasound-guided negative pressure suction and minimally invasive rotatory excision technique in the treatment of complex encapsulated lesions
Yi HUANG ; Xin ZHANG ; Lian XUE ; Chuyun ZHENG ; Min ZHAO ; Nan ZHAO ; Zhongqin HE ; Dan SU ; Lei ZUO
Chinese Journal of Ultrasonography 2024;33(5):434-440
Objective:To evaluate the safety and efficacy of ultrasound-guided percutaneous negative pressure suction and minimally invasive rotatory excision technique for the treatment of complex encapsulated lesions.Methods:A total of 48 patients(48 lesions) with complex encapsulated lesions who underwent ultrasound-guided percutaneous negative pressure suction and minimally invasive rotatory excision technique at Xi′an Chest Hospital from January to October 2023 were retrospectively enrolled, including 39 cases of encapsulated abscess, 7 cases of encapsulated effusion, and 2 cases of encapsulated haematoma; the distribution of the bacterial flora of the abscesses were as follows: 24 cases of tuberculous abscess, 14 cases of bacterial abscess, 1 case of bacterial combined bacterial-fungal abscess, and 7 cases of encapsulated effusion were tuberculous pleurisy, and the clinical data were analysed retrospectively. The maximum upper and lower diameters, right and left diameters, and anterior and posterior diameters of the lesions were measured by ultrasound before and after the operation. The patients′ various biochemical indicators (C-reactive protein, white blood cell count, neutrophil count, erythrocyte sedimentation rate) were detected. The intraoperative and postoperative complications, postoperative outcomes, and postoperative clinical symptoms were recorded.Results:Of the 48 patients, 39 were cured and discharged after negative pressure suction and rotatory excision technique, and 9 patients were cured and discharged after surgical incision and drainage of the lesions. The overall effective rate of negative pressure suction and rotatory excision treatment reached 81.25%, and the average number of days of tube placement was (11.81±7.22) days, and the average number of days of follow-up was (35.77±19.39) days. Compared with preoperative values, the upper and lower diameters, the left and right diameters, and the anterior and posterior diameters of the lesions were all reduced after operation [5.80 (4.95, 7.95)cm vs 8.00 (6.00, 11.82)cm, 4.00 (3.25, 5.00)cm vs 5.85 (4.52, 7.65)cm, 1.80 (1.00, 2.90)cm vs 3.40 (2.50, 6.15)cm, all P<0.01]; and postoperative C-reactive protein, white blood cell count and neutrophil count all decreased (all P<0.05). Before operation there were 31 cases of local swelling, 16 cases of pain, 12 cases of activity limitation, 12 cases of fever, 7 cases of chest tightness, and 6 cases of shortness of breath, and during postoperative follow-up, there were 4 cases of local swelling, 5 cases of pain, and 4 cases of activity limitation. The symptoms of fever, chest tightness, and shortness of breath all disappeared, and there was a statistically significant difference between preoperation and postoperation (all P<0.05). There were no adverse events or complications associated with the intraoperative and postoperative follow-up of negative pressure suction and rotatory excision treatment. Conclusions:Ultrasound-guided percutaneous negative pressure suction and invasive rotatory excision technique for the treatment of complex encapsulated lesions can significantly reduce lesion size, reduce inflammatory response and improve patient symptoms, which is a safe, effective and minimally invasive technique.

Result Analysis
Print
Save
E-mail