1.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Predicting interactions between perfluoroalkyl substances and placental transporters base on molecular docking
Dan CAI ; Yi ZHANG ; Suqin TAN
Journal of Environmental and Occupational Medicine 2025;42(8):954-961
Background The affinity between placental transporters and perfluoroalkyl substances (PFAS) could affect the placental transport and toxicity of PFAS, while the study on the interaction between PFAS and placental transporters is limited. Objective To explore interactions between PFAS and placental transporters using molecular docking, and to provide a theoretical basis for PFAS toxicity prediction and fetal health risk assessment. Methods Fifteen PFAS compounds, each conformationally sampled and energy-minimized, and 16 placental transporters, represented by their 3D structures, were imported into a molecular docking software (MOE 20140901). For each PFAS, 30 distinct conformations were generated and docked into the active pockets of the transporters using a semi-flexible docking mode. Docking poses were primarily scored and ranked based on their calculated binding free energy (ΔG, kcal·mol−1), with additional consideration given to hydrogen bonding interactions and the ligand's root mean square deviation (RMSD) at the binding site; the top 20 poses for each complex were subsequently output. Optimal binding configurations were identified as those exhibiting a relatively low binding free energy (ΔG ranging from −3 to −10 kcal·mol−1), well-defined hydrogen bonds, and an RMSD ≤ 2.0 Å. The binding capabilities of the PFAS to the placental transporters were then evaluated based on these optimal docking results. Results The PFAS could bind to the placental transporters, with structural specificity. For example, the binding capabilities increased as the carbon chain length of PFAS increased, and it was also higher for PFOS alternatives than for PFOS. Besides, the binding capabilities of sulfonic PFAS with the same carbon chain length was also stronger than that of carboxylic PFAS. For example, the binding capabilities of PFOS (C8) to 15 placental transporters was higher than that of PFOA (C8), except for glucose transporter 1 (PFOS vs. PFOA: −4.14 vs. −4.14). Further, PFAS might be bound to the placental transporter through hydrogen, ionic, and hydrophobic interactions. Conclusion PFAS are able to bind the placental transporters, and its toxicity and exposure risk can’t be ignored.
8.Mechanism of icariin in promoting osteogenic differentiation of BMSCs and improving bone metabolism disorders through caveolin-1/Hippo signaling pathway.
Yi-Dan HAN ; Hai-Feng ZHANG ; Yun-Teng XU ; Yu-Huan ZHONG ; Xiao-Ning WANG ; Yun YU ; Yuan-Li YAN ; Shan-Shan WANG ; Xi-Hai LI
China Journal of Chinese Materia Medica 2025;50(3):600-608
Guided by the theory of "the kidney storing essence, governing the bones, and producing marrow", this study explored the mechanism of icariin(ICA) in regulating the osteogenic differentiation of rat bone mesenchymal stem cells(BMSCs) through caveolin-1(Cav1) via in vitro and in vivo experiments, aiming to provide a theoretical basis for the prevention and treatment of postmenopausal osteoporosis with traditional Chinese medicine(TCM). Primary cells were obtained from 4-week-old female SD rats using the whole bone marrow adherent method. Flow cytometry was used to detect the expression of surface markers CD29, CD90, CD11b, and CD45. The potential for osteogenic and adipogenic differentiation was assessed. The effect of ICA on cell viability was determined using the CCK-8 assay, and the impact of ICA on the formation of mineralized nodules was verified by alizarin red staining. A stable Cav1-silenced cell line was constructed using lentivirus. The effect of Cav1 silencing on osteogenic differentiation was observed via alizarin red staining. Western blot analysis was conducted to detect the expression of Cav1, Hippo/TAZ, and osteogenic markers such as Runt-related transcription factor 2(RUNX2) and alkaline phosphatase(ALP). The results showed that primary cells were successfully obtained using the whole bone marrow adherent method, positively expressing surface markers of rat BMSCs and possessing the potential for both osteogenic and adipogenic differentiation. The CCK-8 assay and alizarin red staining results indicated that 1×10~(-7) mol·L~(-1) was the optimal concentration of ICA for intervention in this experiment(P<0.05). During osteogenic induction, ICA inhibited Cav1 expression(P<0.05) while promoting TAZ expression(P<0.05). Alizarin red staining demonstrated that Cav1 silencing significantly promoted the osteogenic differentiation of BMSCs. After ICA intervention, TAZ expression was activated, and the expression of osteogenic markers ALP and RUNX2 was increased. In conclusion, Cav1 silencing significantly promotes the osteogenic differentiation of BMSCs, and ICA promotes this differentiation by inhibiting Cav1 and regulating the Hippo/TAZ signaling pathway.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
Caveolin 1/genetics*
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Differentiation/drug effects*
;
Female
;
Signal Transduction/drug effects*
;
Flavonoids/administration & dosage*
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cells, Cultured
;
Humans
9.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
10.Qualitative and quantitative analysis of chemical components of different processed products of Corni Fructus by UPLC-Q-TOF-MS and UPLC-QqQ-MS/MS.
Li-Qiang ZHANG ; Guo-Shun SHAN ; Yi-Dan HONG ; Si-Han LIU ; Guo-Wei XU ; Hui GAO ; Wei WANG ; Cheng-Guo JU
China Journal of Chinese Materia Medica 2025;50(8):2145-2158
Qualitative and quantitative analysis methods for chemical components of different processed products of Corni Fructus were established to systematically characterize and identify these components, and the content of the main differential components was determined. The chemical components of different processed products of Corni Fructus were collected using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Through analysis of self-built databases, literature, and reference standards, a total of 93 components were obtained, including 19 iridoids, 15 flavonoids, 16 organic acids, eight triterpenoids, eight tannins, four amino acids, two polysaccharides, five olefins, and 16 other compounds. Additionally, by using multivariate statistical methods, the differential components between different processed products of Corni Fructus were screened under the conditions of VIP>1.0 and FC<0.5 or FC>2.0 and P<0.05. The PCA and OPLS-DA results showed differences in the chemical components between different processed products of Corni Fructus. A total of 21 differential components were screened, including tartaric acid, morroniside, and rutin. On this basis, ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS) was used to determine the content of 10 main common differential components, including gallic acid, morroniside, ursolic acid, loganin, swertiamarin, rutin, 5-hydroxymethylfurfural, cornuside Ⅰ, quercetin, and oleanolic acid. The above 10 components showed a good linear relationship within the determined concentration range, with the precision, stability, repeatability, and sample recovery rate all meeting the requirements. Compared with that in Corni Fructus, the content of iridoid glycosides in wine-prepared Corni Fructus and wine-and honey-prepared Corni Fructus decreased, while the content of gallic acid, rutin, quercetin, 5-hydroxymethylfurfural, ursolic acid, and oleanolic acid increased. Compared with wine-prepared Corni Fructus, wine-and honey-prepared Corni Fructus showed varying degrees of increase in all other components, except for a slight decrease in gallic acid content. In summary, this study clarified the influence of different processing methods on the chemical components of Corni Fructus, providing a theoretical basis for the scientific connotation, overall quality evaluation, and clinically rational application of Corni Fructus processing in the future.
Tandem Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Cornus/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Fruit/chemistry*

Result Analysis
Print
Save
E-mail