1.Role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 and effect of Bushen Jianpi Huoxue Decoction.
Tong-Ying CHEN ; Sai FU ; Xiao-Yun LI ; Shu-Hua LIU ; Yi-Fu YANG ; Dong-Sheng YANG ; Yun-Jie ZENG ; Yang-Bo LI ; Dan LUO ; Hong-Xing HUANG ; Lei WAN
China Journal of Chinese Materia Medica 2025;50(3):583-589
Osteoporosis(OP) is a senile bone disease characterized by an imbalance between bone remodeling and bone formation. Targeting pathogenesis of kidney deficiency, spleen deficiency, and blood stasis, Bushen Jianpi Huoxue Decoction has a significant effect on the treatment of OP by tonifying kidney, invigorating spleen, and activating blood circulation. MicroRNA(miRNA) and the anti-apoptotic protein B-cell lymphoma-2-like protein 1(BCL2L1) are closely related to bone cell metabolism. Therefore, in this study, the binding of miR-140-5p to BCL2L1 was detected by dual luciferase assay and polymerase chain reaction(PCR). After silencing or overexpressing miR-140-5p, the apoptosis, autophagy, and osteogenic function of human fetal osteoblast cell line 1.19(HFOB1.19) were observed by flow cytometry and Western blot. Bushen Jianpi Huoxue Decoction-containing serum was prepared by intragastric administration of Bushen Jianpi Huoxue Decoction in rats. Different concentrations of Bushen Jianpi Huoxue Decoction-containing serum were used to treat HFOB1.19 with or without miR-140-5p mimic. The expression of osteogenic proteins in each group was observed, and the role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 was studied, along with the effect of Bushen Jianpi Huoxue Decoction on these processes. As indicated by the dual luciferase assay, miR-140-5p bound to BCL2L1. Flow cytometry and Western blot showed that miR-140-5p promoted apoptosis and inhibited autophagy in HFOB1.19. After intervention with high, medium, and low doses of Bushen Jianpi Huoxue Decoction-medicated serum, compared with the miR-140-5p NC group, the expression of osteocalcin(OCN), osteopontin(OPN), Runt-related transcription factor 2(RUNX2), and transforming growth factor beta 1(TGF-β1) decreased in the miR-140-5p mimic group, while the expression of bone morphogenetic protein 2(BMP2) showed no significant difference under high-dose intervention. Therefore, miR-140-5p/BCL2L1 can promote apoptosis and inhibit autophagy in HFOB1.19. Bushen Jianpi Huoxue Decoction can affect the osteogenic effect of miR-140-5p through BMP2.
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Cell Line
;
bcl-X Protein/metabolism*
;
Osteoblasts/metabolism*
;
Rats
;
Osteoporosis/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Osteogenesis/drug effects*
2.Burden of congenital birth defects in children under five in China from 1990 to 2021 and prediction of future trend.
Bing-Yi HUANG ; Qin ZHAO ; Dan-Li PENG ; Man-Yi WANG ; Qian-Wen ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(3):347-353
OBJECTIVES:
To study the incidence and disease burden of congenital birth defects in children under five in China from 1990 to 2021 and to predict the incidence of congenital birth defects in this population from 2022 to 2036, providing a reference for the prevention of congenital birth defects in children.
METHODS:
Using the Global Burden of Disease Study 2021 (GBD 2021) database, the incidence and disability-adjusted life years (DALY) were employed to describe the disease burden. The Joinpoint regression model was used to analyze the trends in incidence and DALY rates of congenital birth defects in children under five. A grey prediction model GM(1,1) was applied to fit the trend of incidence rates of congenital birth defects in this age group and to predict the incidence from 2022 to 2036.
RESULTS:
In 2021, the incidence rate of congenital birth defects among children under five in China was 737.28 per 100 000. Among these, congenital musculoskeletal and limb deformities had the highest incidence rate at 307.15 per 100 000, followed by congenital heart defects (223.53 per 100 000), congenital urinary and genital tract malformations (74.99 per 100 000), and congenital gastrointestinal malformations (62.61 per 100 000). From 1990 to 2021, the incidence rate and DALY rate of congenital birth defects in children under five in China decreased at an average annual rate of 1.73% and 5.42%, respectively. The prediction analysis indicated a decreasing trend in the incidence of congenital birth defects among children under five in China from 2022 to 2036, with the incidence rate dropping from 892.36 per 100 000 in 2022 to 783.35 per 100 000 in 2036.
CONCLUSIONS
The incidence and disease burden of congenital birth defects in children under five in China showed a significant declining trend from 1990 to 2021. It is predicted that this incidence will continue to decrease until 2036.
Humans
;
Congenital Abnormalities/epidemiology*
;
China/epidemiology*
;
Incidence
;
Infant
;
Infant, Newborn
;
Child, Preschool
;
Female
;
Male
;
Forecasting
;
Disability-Adjusted Life Years
3.Ultra-early administration of eculizumab in a child with atypical hemolytic uremic syndrome: a case report.
Dan-Dan GUO ; Yi-Xin XIAO ; Wei-Rui WANG ; Xiao-Lu DENG ; Ye-Hong HUANG
Chinese Journal of Contemporary Pediatrics 2025;27(11):1408-1413
A 10-year-old girl was admitted with a 38-hour history of widespread subcutaneous petechiae and hematuria and a 6-hour history of jaundice and oliguria. Physical examination revealed widespread subcutaneous petechiae and jaundice of the skin and sclera. Laboratory tests showed anemia, thrombocytopenia, acute kidney injury, and markedly elevated lactate dehydrogenase. Thrombotic microangiopathy was initially diagnosed, with a high suspicion of atypical hemolytic uremic syndrome (aHUS). Eculizumab was initiated within 9 hours of admission (within 48 hours of onset). After the first infusion, hemolysis rapidly ceased, and the platelet count and renal function gradually returned to normal. Whole-exome sequencing identified homozygous deletions of CFHR1 exon 2 and CFHR4 exon 1. aHUS typically has abrupt onset and rapid progression. Clinicians should maintain high suspicion for aHUS when the triad of thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney injury is present. Ultra-early eculizumab (within 48 hours of onset) rapidly blocks complement-mediated thrombotic microangiopathy, reverses organ injury, and improves long-term prognosis. Additionally, complement-related genetic testing is important for etiological clarification and individualized determination of eculizumab treatment duration.
Humans
;
Antibodies, Monoclonal, Humanized/administration & dosage*
;
Female
;
Atypical Hemolytic Uremic Syndrome/drug therapy*
;
Child
;
Complement C3b Inactivator Proteins
4.Corrigendum to "Hydralazine represses Fpn ubiquitination to rescue injured neurons via competitive binding to UBA52" J. Pharm. Anal. 14 (2024) 86-99.
Shengyou LI ; Xue GAO ; Yi ZHENG ; Yujie YANG ; Jianbo GAO ; Dan GENG ; Lingli GUO ; Teng MA ; Yiming HAO ; Bin WEI ; Liangliang HUANG ; Yitao WEI ; Bing XIA ; Zhuojing LUO ; Jinghui HUANG
Journal of Pharmaceutical Analysis 2025;15(4):101324-101324
[This corrects the article DOI: 10.1016/j.jpha.2023.08.006.].
5.Associations of Genetic Risk and Physical Activity with Incident Chronic Obstructive Pulmonary Disease: A Large Prospective Cohort Study.
Jin YANG ; Xiao Lin WANG ; Wen Fang ZHONG ; Jian GAO ; Huan CHEN ; Pei Liang CHEN ; Qing Mei HUANG ; Yi Xin ZHANG ; Fang Fei YOU ; Chuan LI ; Wei Qi SONG ; Dong SHEN ; Jiao Jiao REN ; Dan LIU ; Zhi Hao LI ; Chen MAO
Biomedical and Environmental Sciences 2025;38(10):1194-1204
OBJECTIVE:
To investigate the relationship between physical activity and genetic risk and their combined effects on the risk of developing chronic obstructive pulmonary disease.
METHODS:
This prospective cohort study included 318,085 biobank participants from the UK. Physical activity was assessed using the short form of the International Physical Activity Questionnaire. The participants were stratified into low-, intermediate-, and high-genetic-risk groups based on their polygenic risk scores. Multivariate Cox regression models and multiplicative interaction analyses were used.
RESULTS:
During a median follow-up period of 13 years, 9,209 participants were diagnosed with chronic obstructive pulmonary disease. For low genetic risk, compared to low physical activity, the hazard ratios ( HRs) for moderate and high physical activity were 0.853 (95% confidence interval [ CI]: 0.748-0.972) and 0.831 (95% CI: 0.727-0.950), respectively. For intermediate genetic risk, the HRs were 0.829 (95% CI: 0.758-0.905) and 0.835 (95% CI: 0.764-0.914), respectively. For participants with high genetic risk, the HRs were 0.809 (95% CI: 0.746-0.877) and 0.818 (95% CI: 0.754-0.888), respectively. A significant interaction was observed between genetic risk and physical activity.
CONCLUSION
Moderate or high levels of physical activity were associated with a lower risk of developing chronic obstructive pulmonary disease across all genetic risk groups, highlighting the need to tailor activity interventions for genetically susceptible individuals.
Humans
;
Pulmonary Disease, Chronic Obstructive/epidemiology*
;
Exercise
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Aged
;
Genetic Predisposition to Disease
;
Risk Factors
;
United Kingdom/epidemiology*
;
Incidence
;
Adult
6.Clinical and histological evaluation of three-dimensional printing individualized titanium mesh for alveolar bone defect repair.
Pengyu ZHAO ; Gang CHEN ; Yi CHENG ; Chao WANG ; Dan CHEN ; Haitao HUANG
West China Journal of Stomatology 2025;43(4):592-602
OBJECTIVES:
To evaluate the osteogenic efficacy of three-dimensional printing individualized titanium mesh (3D-PITM) as a scaffold material in guided bone regeneration (GBR).
METHODS:
1) Patients undergoing GBR for alveolar bone defects were enrolled as study subjects, and postoperative healing complications were recorded. 2) Postoperative cone beam computed tomography (CBCT) scans acquired at least 6 months post-surgery were used to calculate the percentage of actual bone formation volume. 3) Alveolar bone specimens were collected during the first-stage implant surgery for histomorphometric analysis. This analysis quantitatively measured the proportions of newly formed bone and newly formed unmineralized bone within the specimens. Specimens were categorized into three groups based on healing complications (good healing group, wound dehiscence group, 3D-PITM exposure group) to compare differences in the proportions of newly formed bone and newly formed unmineralized bone.
RESULTS:
1) Twelve patients were included. Guided bone regeneration failed in one patient, and 3D-PITM exposure occurred in three patients (exposure rate: 25%). 2) The mean percentage of actual bone formation volume in the 11 successful guided bone regeneration cases was 95.23%±28.85%. 3) Histomorphometric analysis revealed that newly formed bone constituted 40.35% of the alveolar bone specimens, with newly formed unmineralized bone accounting for 13.84% of the newly formed bone. Intergroup comparisons showed no statistically significant differences (P>0.05) in the proportions of newly formed bone or newly formed unmineralized bone between the good healing group and the wound dehiscence group or the 3D-PITM exposure group.
CONCLUSIONS
3D-PITM enables effective bone augmentation. Radiographic assessment demonstrated favorable bone formation volume, while histological analysis confirmed substantial formation of newly formed mineralized bone within the surgical site.
Humans
;
Printing, Three-Dimensional
;
Titanium
;
Cone-Beam Computed Tomography
;
Bone Regeneration
;
Osteogenesis
;
Surgical Mesh
;
Tissue Scaffolds
;
Alveolar Process/surgery*
;
Adult
;
Male
;
Middle Aged
;
Female
;
Wound Healing
;
Guided Tissue Regeneration, Periodontal/methods*
;
Alveolar Bone Loss/surgery*
7.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
8.Application and research of painless diagnosis and treatment technology in ultrasound-guided PICC catheterization in children
Yali HUANG ; Xianghong WANG ; Hongxin LI ; Qiong YI ; Dan CONG ; Yuan FANG ; Ruoxing LI
China Modern Doctor 2024;62(5):87-90
Objective To explore the application of painless diagnosis and treatment technology in children's peripherally inserted central catheter(PICC)guided by ultrasound.Methods Totally 82 children who planned to undergo PICC in the hospital from January 2021 to January 2023 were selected and randomly divided into a control group and an observation group using a random number table method,with 41 cases in each group;The control group underwent conventional ultrasound guided PICC catheterization,while the observation group underwent painless diagnostic and therapeutic techniques using ultrasound guided PICC catheterization;Compare the success rate of catheterization,completion time of catheterization,degree of pain in the child pain[children's pain behavior scale(FLACC)],tolerance[Houpt behavior scale(HBS)],compliance[Frankl scale(FCS)],and family satisfaction between the two groups.Results The success rate of catheterization in the observation group was higher than that in the control group,and the catheterization time was shorter than that in the control group,with a statistically significant difference(P<0.05).The FLACC score of the observation group was lower than that of the control group,while the HBS score and FCS score were higher than those of the control group,with a statistically significant difference(P<0.05);The total satisfaction of family members in the observation group was higher than that in the control group,and the difference was statistically significant(P<0.05).Conclusion The use of painless diagnosis and treatment technology in ultrasound-guided PICC catheterization in children can improve the success rate of catheterization,shorten the catheterization time,reduce the degree of pain in children,enhance tolerance and compliance,and improve family satisfaction.
9.The Role and Possible Mechanisms of Exercise in Combating Osteoporosis by Modulating The Bone Autophagy Pathway
Xin-Yu DAI ; Bin LI ; Dan JIN ; Xue-Jie YI ; Rui-Qi HUANG ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(7):1589-1603
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.
10.Pathologic Function of Cyclin-dependent Kinase 5 and Its Relationship With Exercise
Dan JIN ; Rui-Qi HUANG ; Ting-Ting YAO ; Xue-Jie YI ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(11):2868-2879
Cyclin-dependent kinases (CDKs) are proline-induced serine/threonine kinases that are primarily involved in the regulation of cell cycle, gene transcription, and cell differentiation. In general, CDKs are activated by binding to specific regulatory subunits of cell cycle proteins and are regulated by phosphorylation of specific T-loops by CDK activated kinases. In the CDKs family, cyclin-dependent kinase 5 (CDK5) is a specialized member whose activity is triggered only by interaction with p35 and p39, which do not have the same sequence as the cell cycle proteins, and this may be one reason why CDK5 is distinguished from other CDK members by its structural and functional differences. In addition, unlike most CDK members that require phosphorylation at specific sites to function, CDK5 does not require such phosphorylation, and it can be activated simply by binding to p35 and p39. More notably, inhibitors that are commonly used to inhibit the activity of other CDK members have almost zero effect on CDK5. In contrast, CDK5, as a unique CDK family member, plays an important role in the development of numerous diseases. In metabolic diseases, elevated CDK5 expression leads to decreased insulin secretion, increased foam cell formation and triggers decreased bone mass in the body, thus accelerating metabolic diseases, and the role of CDK5 in bone biology is gradually gaining attention, and the role of CDK5 in bone metabolic diseases may become a hotspot for research in the future; in neurodegenerative diseases, hyperphosphorylation of Tau protein is an important hallmark of Alzheimer’s disease development, and changes in CDK5 expression are associated with Tau protein phosphorylation and nerve death, indicating that CDK5 is highly related to the development of the nervous system; in tumor diseases, the role of CDK5 in the proliferation, differentiation and migration and invasion of tumor cells marks the development of tumorigenesis, but different researchers hold different views, and further studies are needed in the follow-up. Therefore, the study of its mechanism of action in diseases can help to reveal the pathogenesis and pathological process of diseases. Appropriate exercise not only helps in the prevention of diseases, but also plays a positive role in the treatment of diseases. Exercise-induced mechanical stress can improve bone microstructure and increase bone mass in osteoporosis patients. In addition, exercise can effectively inhibit neuronal apoptosis and improve mitochondrial dysfunction, more importantly, appropriate exercise can inhibit the proliferation of cancer cells to a certain extent. It can be seen that exercise occupies a pivotal position in the prevention and treatment of pathologic diseases. It has been shown that exercise can reduce the expression of CDK5 and affect the pathological process of neurological diseases. Currently, there is a dearth of research on the specific mechanisms of CDK5’s role in improving disease outcomes through exercise. In order to understand its effects more comprehensively, subsequent studies need to employ diverse exercise modalities, targeting patients with various types of diseases or corresponding animal models for in-depth exploration. This article focuses on the pathological functions of CDK5 and its relationship with exercise, with a view to providing new insights into the prevention and treatment of disease by CDK5.

Result Analysis
Print
Save
E-mail