1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
3.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
4.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*
5.Retrospective study on intervention of traditional Chinese medicine in osteoporosis and related pain diseases.
Yi-Run LI ; Li LI ; Yin-Qiu GAO ; Cui-Ling DONG ; Xing-Jiang XIONG ; Xiao-Chen YANG
China Journal of Chinese Materia Medica 2025;50(11):3180-3188
Osteoporosis(OP) is a metabolic bone disorder characterized by reduced bone mass and degenerative bone tissue. Osteoporotic pain(OPP) is its most common clinical symptom, significantly affecting the quality of life of patients. With the limitations of modern medical treatments and the intensification of aging, it is imperative to explore more cost-effective interventions for OPP. This paper, based on databases such as China National Knowledge Infrastructure(CNKI), VIP, Wanfang, BioMed, and Web of Science, uncovered the connection between the pathogenesis of OPP in traditional Chinese medicine(TCM) and modern medical mechanisms and retrospectively summarized the basic and clinical research methods and evidence of TCM prescriptions in the treatment of OP and related pain diseases. Studies have shown that TCM prescriptions, focusing on treatments such as nourishing the kidney, strengthening the spleen, and activating blood circulation to remove blood stasis, can significantly improve pain symptoms, increase bone mineral density(BMD), and adjust bone metabolic indicators such as C-terminal telopeptide of type Ⅰ collagen(CTX), serum bone Gla-protein(S-BGP), and alkaline phosphatase(ALP). The mechanisms of action of TCM prescriptions in treating OP and improving OPP symptoms were related to signaling pathways such as Wnt/β-catenin, nuclear factor kappa-B(NF-κB), mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), and the osteoprotegerin(OPG)/receptor activator of NF-κB(RANK)/receptor activator of NF-κB ligand(RANKL) axis. Further strengthening the accumulation and analysis of clinical data, rigorously designing and conducting randomized controlled trials of TCM treatments for OPP with large sample sizes, standardizing outcome measures in basic and clinical research by using methods such as the core outcome set(COS), and incorporating mass spectrometry and omics approaches to uncover more potential active components and mechanisms may contribute to a deeper exploration of the advantages and essence of TCM prescriptions in the treatment of OPP.
Humans
;
Osteoporosis/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Retrospective Studies
;
Bone Density/drug effects*
;
Medicine, Chinese Traditional
;
Pain/metabolism*
;
Animals
6.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
7.Chinese Medicine for Treatment of COVID-19: A Review of Potential Pharmacological Components and Mechanisms.
Qian-Qian XU ; Dong-Dong YU ; Xiao-Dan FAN ; He-Rong CUI ; Qian-Qian DAI ; Xiao-Ying ZHONG ; Xin-Yi ZHANG ; Chen ZHAO ; Liang-Zhen YOU ; Hong-Cai SHANG
Chinese journal of integrative medicine 2025;31(1):83-95
Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
COVID-19 Drug Treatment
;
SARS-CoV-2/drug effects*
;
COVID-19/therapy*
;
Medicine, Chinese Traditional/methods*
;
Antiviral Agents/pharmacology*
;
Animals
8.A practice guideline for therapeutic drug monitoring of mycophenolic acid for solid organ transplants.
Shuang LIU ; Hongsheng CHEN ; Zaiwei SONG ; Qi GUO ; Xianglin ZHANG ; Bingyi SHI ; Suodi ZHAI ; Lingli ZHANG ; Liyan MIAO ; Liyan CUI ; Xiao CHEN ; Yalin DONG ; Weihong GE ; Xiaofei HOU ; Ling JIANG ; Long LIU ; Lihong LIU ; Maobai LIU ; Tao LIN ; Xiaoyang LU ; Lulin MA ; Changxi WANG ; Jianyong WU ; Wei WANG ; Zhuo WANG ; Ting XU ; Wujun XUE ; Bikui ZHANG ; Guanren ZHAO ; Jun ZHANG ; Limei ZHAO ; Qingchun ZHAO ; Xiaojian ZHANG ; Yi ZHANG ; Yu ZHANG ; Rongsheng ZHAO
Journal of Zhejiang University. Science. B 2025;26(9):897-914
Mycophenolic acid (MPA), the active moiety of both mycophenolate mofetil (MMF) and enteric-coated mycophenolate sodium (EC-MPS), serves as a primary immunosuppressant for maintaining solid organ transplants. Therapeutic drug monitoring (TDM) enhances treatment outcomes through tailored approaches. This study aimed to develop an evidence-based guideline for MPA TDM, facilitating its rational application in clinical settings. The guideline plan was drawn from the Institute of Medicine and World Health Organization (WHO) guidelines. Using the Delphi method, clinical questions and outcome indicators were generated. Systematic reviews, Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence quality evaluations, expert opinions, and patient values guided evidence-based suggestions for the guideline. External reviews further refined the recommendations. The guideline for the TDM of MPA (IPGRP-2020CN099) consists of four sections and 16 recommendations encompassing target populations, monitoring strategies, dosage regimens, and influencing factors. High-risk populations, timing of TDM, area under the curve (AUC) versus trough concentration (C0), target concentration ranges, monitoring frequency, and analytical methods are addressed. Formulation-specific recommendations, initial dosage regimens, populations with unique considerations, pharmacokinetic-informed dosing, body weight factors, pharmacogenetics, and drug-drug interactions are covered. The evidence-based guideline offers a comprehensive recommendation for solid organ transplant recipients undergoing MPA therapy, promoting standardization of MPA TDM, and enhancing treatment efficacy and safety.
Mycophenolic Acid/administration & dosage*
;
Drug Monitoring/methods*
;
Humans
;
Organ Transplantation
;
Immunosuppressive Agents/administration & dosage*
;
Delphi Technique
9.A synthetic peptide, derived from neurotoxin GsMTx4, acts as a non-opioid analgesic to alleviate mechanical and neuropathic pain through the TRPV4 channel.
ShaoXi KE ; Ping DONG ; Yi MEI ; JiaQi WANG ; Mingxi TANG ; Wanxin SU ; JingJing WANG ; Chen CHEN ; Xiaohui WANG ; JunWei JI ; XinRan ZHUANG ; ShuangShuang YANG ; Yun ZHANG ; Linda M BOLAND ; Meng CUI ; Masahiro SOKABE ; Zhe ZHANG ; QiongYao TANG
Acta Pharmaceutica Sinica B 2025;15(3):1447-1462
Mechanical pain is one of the most common causes of clinical pain, but there remains a lack of effective treatment for debilitating mechanical and chronic forms of neuropathic pain. Recently, neurotoxin GsMTx4, a selective mechanosensitive (MS) channel inhibitor, has been found to be effective, while the underlying mechanism remains elusive. Here, with multiple rodent pain models, we demonstrated that a GsMTx4-based 17-residue peptide, which we call P10581, was able to reduce mechanical hyperalgesia and neuropathic pain. The analgesic effects of P10581 can be as strong as morphine but is not toxic in animal models. The anti-hyperalgesic effect of the peptide was resistant to naloxone (an μ-opioid receptor antagonist) and showed no side effects of morphine, including tolerance, motor impairment, and conditioned place preference. Pharmacological inhibition of TRPV4 by P10581 in a heterogeneous expression system, combined with the use of Trpv4 knockout mice indicates that TRPV4 channels may act as the potential target for the analgesic effect of P10581. Our study identified a potential drug for curing mechanical pain and exposed its mechanism.
10.A dual-targeting peptide-drug conjugate based on CXCR4 and FOLR1 inhibits triple-negative breast cancer.
Kun WANG ; Cong WANG ; Hange YANG ; Gong CHEN ; Ke WANG ; Peihong JI ; Xudong SUN ; Xuegong FAN ; Jie MA ; Zhencun CUI ; Xingkai WANG ; Hao TIAN ; Dengfu WU ; Lu WANG ; Zhimin WANG ; Jiangyan LIU ; Juan YI ; Kuan HU ; Hailong ZHANG ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):4995-5009
Triple-negative breast cancer is therapeutically challenging due to the low expression of tumor markers and 'cold' tumor immunosuppressive microenvironment. Here, we present a dual-targeting peptide-drug conjugate (PDC) for tumor inhibition. Our PDC efficiently and selectively delivers cytotoxic Monomethyl Auristatin E (MMAE) into tumor cells via C-X-C chemokine receptor type 4 (CXCR4) and folate receptor 1 (FOLR1) for synergistic inhibition of growth and metastasis. Our results show that the dual-targeting PDC has potent antitumor activity in cultured human cells and several murine transplanted tumor models without apparent toxicity. The combination of dual-targeting PDC and radiotherapy modulates the tumor immunosuppressive microenvironment by increasing CD8+ T cell infiltration and attenuating the proportion of myeloid-derived suppressor and regulatory T cells. Therefore, our dual-targeting PDC represents a promising new strategy for cancer therapy that rebalances the immune system and promotes tumor regression.

Result Analysis
Print
Save
E-mail