1.Differences in chemical components and quality analysis of Gardenia jasminoides before and after processing with ginger
Lihua TANG ; Yu WU ; Xuedi HUANG ; Xiaolian HU ; Yi TANG ; Zilong CHEN ; Xiaofan XIAO ; Xide YE
China Pharmacy 2026;37(2):168-173
OBJECTIVE To analyze the differences in chemical components of Gardenia jasminoides before and after processing with ginger, and to evaluate the quality differences among different producing areas. METHODS Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry was used to analyze the compositional differences of G. jasminoides before and after processing with ginger. The water content, total ash, and ethanol-soluble extract content of ginger- processed G. jasminoides were determined according to the 2020 edition of Chinese Pharmacopoeia. High performance liquid chromatography was adopted to determine the contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ in ginger- processed G. jasminoides. RESULTS A total of 49 chemical components were identified from raw G. jasminoides and ginger- processed G. jasminoides, including 14 flavonoids, 15 iridoids, 10 organic acids, 2 alkaloids and 8 other compounds. Among them, 42 components were detected in raw G. jasminoides, 28 in ginger-processed G. jasminoides, and 21 components were common to both. After processing with ginger, raw G. jasminoides lost 21 components (including iridoids, flavonoids, alkaloids, and others), while 7 chemical components were added (including coumarins, organic acids, organic acid esters, and flavonoids). For the 15 batches of ginger-processed G. jasminoides, the water content ranged from 5.64% to 7.11%, total ash from 2.92% to 4.87%, and ethanol-soluble extract from 40.61% to 58.02%. The average contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ were 0.108 7, 0.542 2, 0.565 0, and 0.012 5 mg/g, respectively. CONCLUSIONS After processing with ginger, G. jasminoides loses 21 components, while 7 new components are added. Differences are observed in the water content, total ash, ethanol-soluble extract, and the contents of genipin gentiobioside, geniposide, crocin Ⅰ, and crocin Ⅱ of ginger-processed G. jasminoides from different producing areas. Notably, samples from Fujian exhibit high contents of genipin gentiobioside and ethanol-soluble extract, while samples from Jiangxi have a high content of crocin Ⅰ.
2.Application of AI versus Mimics software for three-dimensional reconstruction in thoracoscopic anatomic segmentectomy: A retrospective cohort study
Chengpeng SANG ; Yi ZHU ; Yaqin WANG ; Li GONG ; Bo MIN ; Haibo HU ; Zhixian TANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):313-321
Objective To analyze the application effects of artificial intelligence (AI) software and Mimics software in preoperative three-dimensional (3D) reconstruction for thoracoscopic anatomical pulmonary segmentectomy. Methods A retrospective analysis was conducted on patients who underwent thoracoscopic pulmonary segmentectomy at the Second People's Hospital of Huai'an from October 2019 to March 2024. Patients who underwent AI 3D reconstruction were included in the AI group, those who underwent Mimics 3D reconstruction were included in the Mimics group, and those who did not undergo 3D reconstruction were included in the control group. Perioperative related indicators of each group were compared. Results A total of 168 patients were included, including 73 males and 95 females, aged 25-81 (61.61±10.55) years. There were 79 patients in the AI group, 53 patients in the Mimics group, and 36 patients in the control group. There were no statistical differences in gender, age, smoking history, nodule size, number of lymph node dissection groups, postoperative pathological results, or postoperative complications among the three groups (P>0.05). There were statistical differences in operation time (P<0.001), extubation time (P<0.001), drainage volume (P<0.001), bleeding volume (P<0.001), and postoperative hospital stay (P=0.001) among the three groups. There were no statistical differences in operation time, extubation time, bleeding volume, or postoperative hospital stay between the AI group and the Mimics group (P>0.05). There was no statistical difference in drainage volume between the AI group and the control group (P=0.494), while there were statistical differences in operation time, drainage tube retention time, bleeding volume, and postoperative hospital stay (P<0.05). Conclusion For patients requiring thoracoscopic anatomical pulmonary segmentectomy, preoperative 3D reconstruction and preoperative planning based on 3D images can shorten the operation time, postoperative extubation time and hospital stay, and reduce intraoperative bleeding and postoperative drainage volume compared with reading CT images only. The use of AI software for 3D reconstruction is not inferior to Mimics manual 3D reconstruction in terms of surgical guidance and postoperative recovery, which can reduce the workload of clinicians and is worth promoting.
3.Epidemiological characteristics and genotyping of norovirus in Jingzhou Area
Zhiming TANG ; Lei TAN ; Weihua YI
Journal of Public Health and Preventive Medicine 2025;36(1):70-73
Objective To understand the epidemiological and genotypic characteristics of norovirus (NoV) in Jingzhou area,and to design primers and probes covering the variant genomes in the NoV gene library. Methods A total of 556 fecal samples were collected from suspected NoV patients from the First People's Hospital of Jingzhou from January 2022 to May 2023. The positive rate of NoV nucleic acid in fecal samples was detected by commercial kits. The differences in positive rates among different seasons and five age groups were statistically analyzed. Primers covering the NoV variant genome were designed to genotype some positive specimens. Results The detection rate of NoV nucleic acid in the tested samples was 30.04% (167/556). The detection rate in spring and winter was higher than that in summer and autumn (χ2=20.411,P<0.01). There were statistical differences in the positive rates among the five age groups of <1 year, 1-5 years, 6-10 years, 11-19 years, and >19 years (χ2=17.192,P<0.01), and the positive rate in young children (1~5 years old) was the highest (39.29%, 88/224). In addition, all the positive samples were NoV GII. Conclusion The epidemic situation of NoV is serious in winter and spring in Jingzhou area, with a high infection rate in young children (1-5 years old), and NoV GII is the main prevalent genotype. The primers designed in this study can be used for genotyping of NoV GI and GII.
4.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.
5.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.
6.Concept, design and clinical application of minimally invasive liver transplantation through laparoscopic combined upper midline incision
Shuhong YI ; Hui TANG ; Kaining ZENG ; Xiao FENG ; Binsheng FU ; Qing YANG ; Jia YAO ; Yang YANG ; Guihua CHEN
Organ Transplantation 2025;16(1):67-73
Objective To explore the technical process and clinical application of laparoscopic combined upper midline incision minimally invasive liver transplantation. Methods A retrospective analysis was conducted on 30 cases of laparoscopic combined upper midline incision minimally invasive liver transplantation. The cases were divided into cirrhosis group (15 cases) and liver failure group (15 cases) based on the primary disease. The surgical and postoperative conditions of the two groups were compared. Results All patients successfully underwent laparoscopic "clockwise" liver resection, with no cases of passive conversion to open surgery or intolerance to pneumoperitoneum. In 6 cases, the right lobe was relatively large, and the right hepatic ligaments could not be completely mobilized. One case required an additional reverse "L" incision during open surgery. All patients successfully completed the liver transplantation, with no major intraoperative bleeding, cardiovascular events, or other occurrences in the 30 patients. The model for end-stage liver disease (MELD) score in the cirrhosis group was lower than that in the liver failure group (P<0.001). There were no statistically significant differences between the two groups in terms of age, surgical time, blood loss, anhepatic phase, or cold ischemia time (all P>0.05). During the perioperative period, there was 1 case of hepatic artery embolism, 1 case of portal vein anastomotic stenosis, no complications of hepatic vein and inferior vena cava, and 3 cases of biliary anastomotic stenosis, all of which occurred in the liver failure group. Conclusions In strictly selected cases, the minimally invasive liver transplantation technique combining laparoscopic hepatectomy with upper midline incision for graft implantation has the advantages of smaller incisions, less bleeding, relatively easier operation, and faster postoperative recovery, which is worthy of clinical promotion and application.
7.Effect of Folic Acid-modified Crebanine Polyethylene Glycol-polylactic Acid Hydroxyacetic Acid Copolymer Nanoparticles Combined with Ultrasonic Irradiation on Subcutaneous Tumor Growth of Liver Cancer in Mice
Rui PAN ; Junze TANG ; Hailiang ZHANG ; Kun YU ; Xiaoyu ZHAO ; Xin CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):217-225
ObjectiveTo investigate the effect of folic acid-modified crebanine polyethylene glycol-polylactic acid hydroxyacetic acid copolymer(PEG-PLGA) nanoparticles(FA-Cre@PEG-PLGA NPs, hereinafter referred to as NPs) combined with ultrasonic irradiation on subcutaneous tumor of liver cancer in Kunming(KM) mice. MethodsEighty-four healthy male KM mice were utilized to establish a subcutaneous tumor model of mouse hepatocellular carcinoma with H22 cells, then mice were randomly divided into model group, placebo group, hydroxycamptothecin group(8 mg∙kg-1), low, medium and high dose crebanine raw material groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose crebanine groups, respectively), low, medium and high dose NPs groups(2, 2.5, 3 mg∙kg-1), and low, medium and high dose NPs combined with ultrasonic irradiation groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose combination groups, respectively). The corresponding doses of drugs were administered via tail vein injection, the model group received no treatment, while the placebo group was injected with an equivalent amount of normal saline. Dosing was conducted for a total of 10 times on alternate days. The body mass of the mice was monitored, and parameters such as body mass change rate, thymus index, spleen index, tumor volume, tumor weight, relative tumor growth rate(T/C), and tumor inhibition rate(TGI) were calculated. Pathological changes in liver and kidney tissues as well as the tumor were observed by hematoxylin-eosin(HE) staining. Additionally, the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), blood urea nitrogen(BUN) and creatinine(CREA) in serum of mice were detected by biochemical method. Furthermore, the effect of ultrasound on the distribution of NPs in subcutaneous tumors of mouse hepatocellular carcinoma was observed by in vivo imaging technique. ResultsAmong different treatment methods, the combination of NPs and ultrasound irradiation had the best therapeutic effect. Compared with the model group, the body mass growth rates of mice in the medium and high combination groups decreased, while the thymus index and spleen index increased, but there was no statistically significant difference in serum AST, ALT, BUN and CREA levels, indicating that NPs combined with ultrasound irradiation had little effect on the normal physiological state of the body, oth groups had TGI>40% and T/C<60%, indicating a clear anti-tumor effect. Pathological analysis showed that compared with the NPs groups, the combination groups exhibited varying degrees of necrosis in tumor cells, accompanied by less damage to the liver and kidneys. In vivo imaging of small animals showed that compared with the high dose NPs group, the high dose combination group had stronger tumor targeting ability(P<0.01). ConclusionNPs combined with ultrasonic irradiation can not only effectively targeted the drug to the tumor site, inhibit the subcutaneous tumor growth of mouse liver cancer, but also decrease damage to liver and kidney tissues.
8.Research progress of meibomian gland dysfunction-related dry eye
Jianbo ZHONG ; Guoqiang ZENG ; Yi ZHANG ; Xiaoyan DOU ; Wanmei TANG ; Kunling CHEN ; Li CAI
International Eye Science 2025;25(2):259-263
In recent years, with the endless emergence of meibomian gland dysfunction(MGD)diagnostic equipment, rich treatment methods, and in-depth clinical and basic research on MGD at home and abroad, the understanding of MGD has entered a new stage. MGD-related dry eye is considered to be the main cause of lipid abnormal dry eye, and its occurrence and development is a chronic and multi-factorial pathological process. This article reviews the pathogenesis, imaging analysis and clinical treatment progress of MGD-related dry eye, in order to provide scientific evidence and ideas for clinical diagnosis and therapy of MGD-related dry eye.
9.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
10.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.


Result Analysis
Print
Save
E-mail