1.Clinicopathologic characteristics,gene mutation profile and prognostic analysis of thyroid diffuse large B-cell lymphoma
Zhishan DU ; Yue WANG ; Ziyang SHI ; Qing SHI ; Hongmei YI ; Lei DONG ; Li WANG ; Shu CHENG ; Pengpeng XU ; Weili ZHAO
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(1):64-71
Objective·To analyze the clinicopathologic characteristics,gene mutation profile,and prognostic factors of thyroid diffuse large B-cell lymphoma(DLBCL).Methods·From November 2003 to December 2021,a total of 66 patients with thyroid DLBCL[23 cases(34.8%)with primary thyroid DLBCL,and 43 cases(65.2%)with secondary thyroid DLBCL]admitted to Ruijin Hospital,Shanghai Jiao Tong University School of Medicine were retrospectively analyzed for their clinicopathological data,survival and prognostic factors.Gene mutation profiles were evaluated by targeted sequencing(55 lymphoma-related genes)in 40 patients.Results·Compared to primary thyroid DLBCL,secondary thyroid DLBCL had advanced ratio of Ann Arbor stage Ⅲ?Ⅳ(P=0.000),elevated serum lactate dehydrogenase(LDH)(P=0.043),number of affected extranodal involvement≥2(P=0.000),non-germinal center B cell(non-GCB)(P=0.030),BCL-2/MYC double expression(DE)(P=0.026),and international prognostic index(IPI)3?5-scores(P=0.000).The proportion of patients who underwent thyroid surgery(P=0.012)was lower than that of patients with primary thyroid DLBCL.The complete remission(CR)rate in primary thyroid DLBCL patients was higher than that in secondary thyroid DLBCL patients(P=0.039).Fifty-five patients(83%)received rituximab combined with cyclophosphamide,doxorubicin,vincristine,and prednisone(R-CHOP)-based first-line regimen.The estimated 5-year progression free survival(PFS)rate of primary thyroid DLBCL patients was 95.0%,higher than the 49.7%of the secondary patients(P=0.010).Univariate analysis showed that Ann Arbor Ⅲ?Ⅳ(HR=4.411,95%CI 1.373?14.170),elevated LDH(HR=5.500,95%CI 1.519?19.911),non-GCB(HR= 5.291,95%CI 1.667?16.788),and DE(HR=6.178,95%CI 1.813?21.058)were adverse prognostic factors of PFS in patients with thyroid DLBCL.Ann Arbor Ⅲ?Ⅳ(HR=7.088,95%CI 0.827?60.717),elevated LDH(HR=6.982,95%CI 0.809?60.266),and DE(HR=18.079,95%CI 1.837?177.923)were adverse prognostic factors of overall survival(OS).Multivariate analysis showed that Ann Arbor Ⅲ?Ⅳ(HR=4.693,95%CI 1.218?18.081)and elevated LDH(HR=5.058,95%CI 1.166?21.941)were independent adverse prognostic factors of PFS in patients with thyroid DLBCL.Targeted sequencing data showed mutation frequency>20%in TET2(n=14,35%),KMT2D(n=13,32%),TP53(n=11,28%),GNA13(n=10,25%),KMT2C(n=9,22%),and TP53 were adverse prognostic factors of PFS in patients with thyroid DLBCL(P=0.000).Conclusion·Patients with primary thyroid DLBCL have better PFS and OS than those with secondary thyroid DLBCL.Ann Arbor Ⅲ?Ⅳ,elevated LDH,non-GCB,and DE(MYC and BCL2)are adverse prognostic factors in thyroid DLBCL.TET2,KMT2D,TP53,GNA13,and KMT2C are commonly highly mutated genes in thyroid DLBCL,and the prognosis of patients with TP53 mutations is poor.
2.Simultaneous content determination of seventeen constituents in Yangxue Ruanjian Capsules by UPLC-MS/MS
Yong-Ming LIU ; Shu-Sen LIU ; Yi-Zhe XIONG ; Xiang WANG ; Yu-Yun WU ; Jin LIU ; Ling-Yun PAN ; Guo-Qing DU ; Hong-Sheng ZHAN
Chinese Traditional Patent Medicine 2024;46(2):353-358
AIM To establish a UPLC-MS/MS method for the simultaneous content determination of liquiritin apioside,alibiflorin,swertiamarin,methyl gallate,benzoylpaeoniflorin,sweroside,6′-O-β-D-glucosylgentiopicroside,isoliquiritigenin,loganic acid,liquiritigenin,gallic acid,paeoniflorin,oxypaeoniflorin,gentiopicroside,glycyrrhizic acid,isoliquiritoside and liquiritin in Yangxue Ruanjian Capsules.METHODS The analysis was performed on a 40℃thermostatic Waters BEH C18column(2.1 mm×100 mm,1.7 μm),with the mobile phase comprising of 2 mmol/L ammonium acetate(containing 0.1%formic acid)-acetonitrile flowing at 0.3 mL/min in a gradient elution manner,and electron spray ionization source was adopted in negative ion scanning with multiple reaction monitoring mode.RESULTS Seventeen constituents showed good linear relationships within their own ranges(r>0.999 6),whose average recoveries were 91.33%-104.03%with the RSDs of 1.58%-3.50%.CONCLUSION This rapid,accurate and stable method can be used for the quality control of Yangxue Ruanjian Capsules.
3.Effect of MAP on preservation quality of deglycerolized red blood cells
Jianhao YANG ; Xiaoxuan NIE ; Lili ZHANG ; Shunwei ZHANG ; Yi DU ; Yingjie QIU ; Qing MA ; Bei XU
Chinese Journal of Blood Transfusion 2024;37(6):684-689
Objective To observe the effect of deglycerolized red blood cells suspended in MAP on preservation and ex-plore the most effective preservation method.Methods Concentrated red blood cells were prepared by centrifuging 400 mL of whole blood on the third day after collection.40%compound glycerol solution was added using the ACP 215 automatic blood cell analyzer,and the resulting mixture was stored in an ultra-low temperature refrigerator at-65℃for 30 days.After thawing and washing,it was equally separated into two bags.The control group received 0.9%sodium chloride solution,while the experimental group received MAP.Both groups were stored at 2-6℃.Hematological parameters,hemolysis inde-xes and cell metabolism indexes were measured on day 0,1,3,5,7 and 14 after storage.The quality changes of both groups were observed during the 14-day storage period.Results The quality of red blood cells in both groups was assessed through a panel of quality tests,including volume,hemoglobin content,free hemoglobin content,white blood cell residue,glycerin residue and sterility.These results met the Quality Requirements outlined in the"Quality Requirements of Whole Blood and Component Blood"(GB18469-2012),Hematocrit,red blood cell count,Hb recovery rate after washing and MCV meet the detection limit outlined in the"Expert Consensus on Quality Evaluation Indicators for Frozen Red Blood Cells",and the residual amount of platelets exceeds the detection limit(≤1%).There were no significant differences in RBC,Hct,MCV and hemoglobin between the two groups during the 14 day storage period.The level of free hemoglobin,hemolysis rate and K+value increased in both groups over time.Significant differences in free hemoglobin were found on day 3,5,7 and 14 between the two groups(P<0.05).Hemolysis rate was significantly different on days 3,5,7 and 14,while K+value was significantly different only on day 14(P<0.05).On day 14,the osmotic fragility of red blood cells was higher in the control group than in the experimental group(P<0.05);The ATP and pH values of both groups decreased as storage time in-creased,and significant differences in ATP and pH value were found on day 3,5,7 and on day 1,3,5,7 and 14,respec-tively(P<0.05).Conclusion Deglycerolized red blood cells suspended in MAP additive solution can extend the storage period of blood to 7 days.This study provides a reference for the formulation of relevant standards.
4.Discussion on WU Wei's Thoughts for the Treatment of Atrial Fibrillation Based on the Theory of Stasis-Toxin Causing Palpitation
Hui-Qi ZHAI ; Yi-Hua LI ; Liang KANG ; Run-Jia YU ; Rong LI ; Hui WU ; Xiao-Xiong ZHOU ; Zhi-Yi DU ; Qing-Min CHU ; Wei WU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1316-1322
For the treatment of atrial fibrillation,Professor WU Wei innovatively put forward the theory of heart-blood-vessels trinity and the theory of stasis-toxin causing palpitation.It is believed that atrial fibrillation is caused by stasis and toxin,and affects the heart,blood and vessels.The core pathogenesis of atrial fibrillation is due to qi stagnation,blood stasis and toxin.The treatment for atrial fibrillation should be closely based on the pathogenesis,the therapeutic principles of treating from the perspective of stasis and together by removing toxin gradually is advocated.And the therapy of regulating qi,activating blood and removing stasis is also the way to remove toxin.The medication is based on the modified Taoren Honghua Decoction,which is mainly composed of Persicae Semen,Carthami Flos,Chuanxiong Rhizoma,Corydalis Rhizoma,Rehmanniae Radix,Paeoniae Radix Rubra,Salviae Miltiorrhizae Radix et Rhizoma,Jujubae Fructus,Puerariae Lobatae Radix,Nardostachyos Radix et Rhizoma,Ostreae Concha,Poria,and Polygonati Odorati Rhizoma.According to the characteristics of Lingnan climate and atrial fibrillation mostly being easy to affect the emotions,the pungent drugs in the prescription are usually removed,and the specific herbal pair of Puerariae Lobatae Radix-Nardostachyos Radix et Rhizoma is added to remove toxin according to the differentiation of disease.Moreover,for the treatment of atrial fibrillation,Professor WU Wei also adopts traditional Chinese medicine(TCM)external treatment such as foot bath,acupuncture and moxibustion,and physical-breathing exercise as well as health-care methods for comprehensive regulation,relieving the toxin and restoring the original qi.During the treatment atrial fibrillation,Professor WU Wei follows the principle of precise intervention and comprehensive regulation with Chinese medicine,so as to achieve the purpose of eliminating symptoms,restoring sinus rhythm and improving physical constitution.The thoughts of Professor WU Wei for the syndrome differentiation and treatment of atrial fibrillation will provide reference for the treatment of atrial fibrillation with TCM.
5.Standardized operational protocol for the China Human Brain Bank Consortium(2nd edition)
Xue WANG ; Zhen CHEN ; Juan-Li WU ; Nai-Li WANG ; Di ZHANG ; Juan DU ; Liang YU ; Wan-Ru DUAN ; Peng-Hao LIU ; Han-Lin ZHANG ; Can HUANG ; Yue-Shan PIAO ; Ke-Qing ZHU ; Ai-Min BAO ; Jing ZHANG ; Yi SHEN ; Chao MA ; Wen-Ying QIU ; Xiao-Jing QIAN
Acta Anatomica Sinica 2024;55(6):734-745
Human brain banks use a standardized protocol to collect,process and store post-mortem human brains and related tissues,along with relevant clinical information,and to provide the tissue samples and data as a resource to foster neuroscience research according to a standardized operating protocols(SOP).Human brain bank serves as the foundation for neuroscience research and the diagnosis of neurological disorders,highlighting the crucial rule of ensuring the consistency of standardized quality for brain tissue samples.The first version of SOP in 2017 was published by the China Human Brain Bank Consortium.As members increases from different regions in China,a revised SOP was drafted by experts from the China Human Brain Bank Consortium to meet the growing demands for neuroscience research.The revised SOP places a strong emphasis on ethical standards,incorporates neuropathological evaluation of brain regions,and provides clarity on spinal cord sampling and pathological assessment.Notable enhancements in this updated version of the SOP include reinforced ethical guidelines,inclusion of matching controls in recruitment,and expansion of brain regions to be sampled for neuropathological evaluation.
6.Construction of damage control operation simulation training platform for traumatic brain injury of wartime based on mixed reality
Wen-Qiong DU ; Zhao-Wen ZONG ; Xin ZHONG ; Ren-Qing JIANG ; Yi-Jun JIA ; Can CHEN ; Chuan-Shuan WANG
Chinese Medical Equipment Journal 2024;45(2):17-21
Objective To develop a damage control operation(DCO)simulation training platform for traumatic brain injury(TBI)in wartime based on mixed reality to open up a new path for surgical skills training of military surgeons.Methods The platform mainly consisted of wartime TBI DCO simulation training software,a surgical manikin and a HoloLens 2 MR device.The simulating training software was developed with C# language and the technologies of MR,basic gestures,spatial scanning positioning and etc on the basis of constructed surgical decision-making training system,virtual surgical environment and functional modules.The surgical manikin was customized with reference to the standard body type of an adult male with a height of 180 cm,and an electronic chip was developed and placed inside the head of the manikin to execute data matching with the simulation training software.The simulation training software was installed and run in the HoloLens 2 MR device to realize TBI DCO simulation training on the virtual reality interactive model.Results The platform developed implemented the functions of virtual reality interactive model reset positioning,operation simulation training,examination and on-site demonstration,which gained advantages in stimulating learning interest and facilitating risk-free,time-and space-indepen-dent,immersive and interactive learning and was generally recognized by the trainees.Conclusion The simulation training platform can be a supplementary to other training means to improve the ability of military surgeons in damage control operation.[Chinese Medical Equipment Journal,2024,45(2):17-21]
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail