1.Application of AI versus Mimics software for three-dimensional reconstruction in thoracoscopic anatomic segmentectomy: A retrospective cohort study
Chengpeng SANG ; Yi ZHU ; Yaqin WANG ; Li GONG ; Bo MIN ; Haibo HU ; Zhixian TANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):313-321
Objective To analyze the application effects of artificial intelligence (AI) software and Mimics software in preoperative three-dimensional (3D) reconstruction for thoracoscopic anatomical pulmonary segmentectomy. Methods A retrospective analysis was conducted on patients who underwent thoracoscopic pulmonary segmentectomy at the Second People's Hospital of Huai'an from October 2019 to March 2024. Patients who underwent AI 3D reconstruction were included in the AI group, those who underwent Mimics 3D reconstruction were included in the Mimics group, and those who did not undergo 3D reconstruction were included in the control group. Perioperative related indicators of each group were compared. Results A total of 168 patients were included, including 73 males and 95 females, aged 25-81 (61.61±10.55) years. There were 79 patients in the AI group, 53 patients in the Mimics group, and 36 patients in the control group. There were no statistical differences in gender, age, smoking history, nodule size, number of lymph node dissection groups, postoperative pathological results, or postoperative complications among the three groups (P>0.05). There were statistical differences in operation time (P<0.001), extubation time (P<0.001), drainage volume (P<0.001), bleeding volume (P<0.001), and postoperative hospital stay (P=0.001) among the three groups. There were no statistical differences in operation time, extubation time, bleeding volume, or postoperative hospital stay between the AI group and the Mimics group (P>0.05). There was no statistical difference in drainage volume between the AI group and the control group (P=0.494), while there were statistical differences in operation time, drainage tube retention time, bleeding volume, and postoperative hospital stay (P<0.05). Conclusion For patients requiring thoracoscopic anatomical pulmonary segmentectomy, preoperative 3D reconstruction and preoperative planning based on 3D images can shorten the operation time, postoperative extubation time and hospital stay, and reduce intraoperative bleeding and postoperative drainage volume compared with reading CT images only. The use of AI software for 3D reconstruction is not inferior to Mimics manual 3D reconstruction in terms of surgical guidance and postoperative recovery, which can reduce the workload of clinicians and is worth promoting.
2.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
3.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
4.Design of assisted patient conveying and vibration damping system
Jian YOU ; Jing-Yi WANG ; Wei-Qiang GAO ; Min-Tang LI ; Kai SONG ; Lin-Lin ZHANG ; Chang-Yi CHEN
Chinese Medical Equipment Journal 2024;45(1):15-24
Objective To design an assisted patient conveying and vibration damping system to solve the problems of operator fatigue and patient bump during casualty evacuation.Methods The assisted patient conveying and vibration damping system was composed of several conveying straps and a vibration damping mechanism.The conveying straps were made up of a waist strap,two shoulder straps,a chest strap,adhesive straps and joint components,and the joint components included adjusting buckles,big buckles,small buckles,connecting buckles and hook mechanisms;the vibration damping mechanism adopted the technical form of extension handle combined with vibration absorber,in which the extension handle was made of rigid material and the vibration absorber was equipped with a scissor guiding mechanism.Tests were carried out on the system to record the operating time of the operators and to analyze the system's vibration damping characteristics.Results The system developed extended the operating time of the stretcher conveyers while reduced the vibration during casualty transport,with a maximum vibration reduction of 71.73%.Conclusion The system developed gains advantages in low vibration and low workload,and can be used for casualty conveying in poor road conditions.[Chinese Medical Equipment Journal,2024,45(1):15-24]
5. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG
6.Dietary assessment of patients with chronic kidney disease
Hui HUANG ; Qian WANG ; Ya-Yong LUO ; Zheng-Chun TANG ; Fang LIU ; Rui-Min ZHANG ; Zhe-Yi DONG ; Xiang-Mei CHEN
Medical Journal of Chinese People's Liberation Army 2024;49(8):946-951
Chronic kidney disease(CKD)commonly used dietary assessments including 24-hour dietary recall(24 h DR)/3-day dietary recall(3DDR),food frequency questionnaire(FFQ),dietary records,and estimation of dietary protein intake based on nitrogen balance.Given the high prevalence of CKD patients in Asian population and the scarcity of research using FFQ method,it is crucial to develop an FFQ suitable for Chinese CKD patients.This review summarizes the advantages and disadvantages of dietary assessment methods for CKD,the current research status,and the content and steps involved in establishing an FFQ,with the aim of providing reference for the modification of FFQ for Chinese CKD patients.
7.mfat-1 gene therapy prevents and ameliorates multiple sclerosis in mice
Min-Yi TANG ; Xin-Yun BI ; Shuai WANG ; Chao-Feng XING ; Xiao-Li WU ; Zi-Jian ZHAO ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(10):1930-1936
Aim To investigate the preventive and therapeutic effects of the mfat-1 gene therapy on exper-imental autoimmune encephalomyelitis in mice.Meth-ods mfat-1 gene therapy was used to render the host endogenous capability of producing ω-3 PUFAs,con-comitantly reduce the levels of ω-6 PUFAs,and change the proportion of ω-3/ω-6 PUFAs.Then,the levels of PUFAs in blood were analyzed by gas chromatography.The neurological deficits in mice were evaluated by neurological dysfunction score.HE staining and LFB staining of mouse spinal cord slices were used to ob-serve central nervous system inflammation infiltration and demyelinating lesions.Flow cytometry microsphere microarray technology was used to detect the content of cytokines in serum.Results The mfat-1 gene therapy could significantly raise the proportion of ω-3/ω-6 PU-FAs(P<0.05),markedly delay the incubation period and peak period and reduce neurological dysfunction scores(P<0.05),and improve inflammation and de-myelination of spinal cords(P<0.05).It could also greatly increase the levels of IL-2,IFN-γ,IL-4 and IL-17 in serum(P<0.05).Conclusion The pro-portion of ω-3/ω-6 PUFAs in blood circulation en-hanced by mfat-1 gene therapy can effectively prevent and treat experimental autoimmune encephalomyelitis in mice.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Abrupt Decline in Estimated Glomerular Filtration Rate after Initiating Sodium-Glucose Cotransporter 2 Inhibitors Predicts Clinical Outcomes: A Systematic Review and Meta-Analysis
Min-Hsiang CHUANG ; Yu-Shuo TANG ; Jui-Yi CHEN ; Heng-Chih PAN ; Hung-Wei LIAO ; Wen-Kai CHU ; Chung-Yi CHENG ; Vin-Cent WU ; Michael HEUNG
Diabetes & Metabolism Journal 2024;48(2):242-252
Background:
The initiation of sodium-glucose cotransporter-2 inhibitors (SGLT2i) typically leads to a reversible initial dip in estimated glomerular filtration rate (eGFR). The implications of this phenomenon on clinical outcomes are not well-defined.
Methods:
We searched MEDLINE, Embase, and Cochrane Library from inception to March 23, 2023 to identify randomized controlled trials and cohort studies comparing kidney and cardiovascular outcomes in patients with and without initial eGFR dip after initiating SGLT2i. Pooled estimates were calculated using random-effect meta-analysis.
Results:
We included seven studies in our analysis, which revealed that an initial eGFR dip following the initiation of SGLT2i was associated with less annual eGFR decline (mean difference, 0.64; 95% confidence interval [CI], 0.437 to 0.843) regardless of baseline eGFR. The risk of major adverse kidney events was similar between the non-dipping and dipping groups but reduced in patients with a ≤10% eGFR dip (hazard ratio [HR], 0.915; 95% CI, 0.865 to 0.967). No significant differences were observed in the composite of hospitalized heart failure and cardiovascular death (HR, 0.824; 95% CI, 0.633 to 1.074), hospitalized heart failure (HR, 1.059; 95% CI, 0.574 to 1.952), or all-cause mortality (HR, 0.83; 95% CI, 0.589 to 1.170). The risk of serious adverse events (AEs), discontinuation of SGLT2i due to AEs, kidney-related AEs, and volume depletion were similar between the two groups. Patients with >10% eGFR dip had increased risk of hyperkalemia compared to the non-dipping group.
Conclusion
Initial eGFR dip after initiating SGLT2i might be associated with less annual eGFR decline. There were no significant disparities in the risks of adverse cardiovascular outcomes between the dipping and non-dipping groups.
10.Establishment method and significance of birthweight curve and reference in single center.
Ya WANG ; Yuan WANG ; Hui Rong TANG ; Yan ZHANG ; Chen Yan DAI ; Jie LI ; Yi Min DAI ; Ming Ming ZHENG
Chinese Journal of Obstetrics and Gynecology 2023;58(5):334-342
Objective: To establish neonatal birthweight percentile curves based on single-center cohort database using different methods, compare them with the current national birthweight curves and discuss the appropriateness and significance of single-center birthweight standard. Methods: Based on a prospective first-trimester screening cohort at Nanjing Drum Tower Hospital from January 2017 to February 2022, the generalized additive models for location, scale and shape (GAMLSS) and semi-customized method were applied to generate local birthweight percentile curves (hereinafter referred to as the local GAMLSS curves, semi-customized curves) for 3 894 cases who were at low risk of small for gestation age (SGA) and large for gestation age (LGA). Infants were categorized as SGA (birth weight<10th centile) by both semi-customized and local GAMLSS curves, semi-customized curves only, or not SGA (met neither criteria). The incidence of adverse perinatal outcome between different groups was compared. The same method was used to compare the semi-customized curves with the Chinese national birthweight curves (established by GAMLSS method as well, hereinafter referred to as the national GAMLSS curves). Results: (1) Among the 7 044 live births, 404 (5.74%, 404/7 044), 774 (10.99%, 774/7 044) and 868 (12.32%, 868/7 044) cases were diagnosed as SGA according to the national GAMLSS curves, the local GAMLSS curves and the semi-customized curves respectively. The birth weight of the 10th percentile of the semi-customized curves was higher than that of the local GAMLSS curves and the national GAMLSS curves at all gestational age. (2) When comparing semi-customized curves and the local GAMLSS curves, the incidence of admission to neonatal intensive care unit (NICU) for more than 24 hours of infants identified as SGA by semi-customized curves only (94 cases) and both semi-customized and local GAMLSS curves (774 cases) was 10.64% (10/94) and 5.68% (44/774) respectively, both significantly higher than that in non SGA group [6 176 cases, 1.34% (83/6 176); P<0.001]. The incidence of preeclampsia, pregnancy<34 weeks, and pregnancy<37 weeks of infants identified as SGA by the semi-customized curves only and both semi-customized and local GAMLSS curves was 12.77% (12/94) and 9.43% (73/774), 9.57% (9/94) and 2.71% (21/774), 24.47% (23/94) and 7.24% (56/774) respectively, which were significantly higher than those of the non SGA group [4.37% (270/6 176), 0.83% (51/6 176), 4.23% (261/6 176); all P<0.001]. (3) When comparing semi-customized curves and the national GAMLSS curves, the incidence of admission to NICU for more than 24 hours of infants identified as SGA by semi-customized curves only (464 cases) and both semi-customized and national GAMLSS curves (404 cases) was 5.60% (26/464) and 6.93% (28/404) respectively, both significantly higher than that in non SGA group [6 176 cases, 1.34% (83/6 176); all P<0.001]. The incidence of emergency cesarean section or forceps delivery for non-reassuring fetal status (NRFS) in infants identified as SGA by semi-customized curves only and both semi-customized and national GAMLSS curves was 4.96% (23/464) and 12.38% (50/404), both significantly higher than that in the non SGA group [2.57% (159/6 176); all P<0.001]. The incidence of preeclampsia, pregnancy<34 weeks, and pregnancy<37 weeks in the semi-customized curves only group and both semi-customized and national GAMLSS curves group was 8.84% (41/464) and 10.89% (44/404), 4.31% (20/464) and 2.48% (10/404), 10.56% (49/464) and 7.43% (30/404) respectively, all significantly higher than those in the non SGA group [4.37% (270/6 176), 0.83% (51/6 176), 4.23% (261/6 176); all P<0.001]. Conclusion: Compared with the national GAMLSS birthweight curves and the local GAMLSS curves, the birth weight curves established by semi-customized method based on our single center database is in line with our center' SGA screening, which is helpful to identify and strengthen the management of high-risk infants.
Female
;
Humans
;
Infant, Newborn
;
Pregnancy
;
Birth Weight
;
Cesarean Section
;
Gestational Age
;
Infant, Small for Gestational Age
;
Pre-Eclampsia/epidemiology*
;
Prospective Studies

Result Analysis
Print
Save
E-mail