1.Application of AI versus Mimics software for three-dimensional reconstruction in thoracoscopic anatomic segmentectomy: A retrospective cohort study
Chengpeng SANG ; Yi ZHU ; Yaqin WANG ; Li GONG ; Bo MIN ; Haibo HU ; Zhixian TANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):313-321
Objective To analyze the application effects of artificial intelligence (AI) software and Mimics software in preoperative three-dimensional (3D) reconstruction for thoracoscopic anatomical pulmonary segmentectomy. Methods A retrospective analysis was conducted on patients who underwent thoracoscopic pulmonary segmentectomy at the Second People's Hospital of Huai'an from October 2019 to March 2024. Patients who underwent AI 3D reconstruction were included in the AI group, those who underwent Mimics 3D reconstruction were included in the Mimics group, and those who did not undergo 3D reconstruction were included in the control group. Perioperative related indicators of each group were compared. Results A total of 168 patients were included, including 73 males and 95 females, aged 25-81 (61.61±10.55) years. There were 79 patients in the AI group, 53 patients in the Mimics group, and 36 patients in the control group. There were no statistical differences in gender, age, smoking history, nodule size, number of lymph node dissection groups, postoperative pathological results, or postoperative complications among the three groups (P>0.05). There were statistical differences in operation time (P<0.001), extubation time (P<0.001), drainage volume (P<0.001), bleeding volume (P<0.001), and postoperative hospital stay (P=0.001) among the three groups. There were no statistical differences in operation time, extubation time, bleeding volume, or postoperative hospital stay between the AI group and the Mimics group (P>0.05). There was no statistical difference in drainage volume between the AI group and the control group (P=0.494), while there were statistical differences in operation time, drainage tube retention time, bleeding volume, and postoperative hospital stay (P<0.05). Conclusion For patients requiring thoracoscopic anatomical pulmonary segmentectomy, preoperative 3D reconstruction and preoperative planning based on 3D images can shorten the operation time, postoperative extubation time and hospital stay, and reduce intraoperative bleeding and postoperative drainage volume compared with reading CT images only. The use of AI software for 3D reconstruction is not inferior to Mimics manual 3D reconstruction in terms of surgical guidance and postoperative recovery, which can reduce the workload of clinicians and is worth promoting.
2.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
3.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
4.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
5.Early follow-up study on three-dimensional-printed customized porous acetabular components for reconstructing extensive acetabular bone defects in primary total hip arthroplasty.
Shangkun TANG ; Zhuangzhuang LI ; Xin HU ; Linyun TAN ; Hao WANG ; Yitian WANG ; Minxun LU ; Fan TANG ; Yi LUO ; Yong ZHOU ; Chongqi TU ; Li MIN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(12):1543-1550
OBJECTIVE:
To evaluate the feasibility and short-term effectiveness of three-dimensional (3D)-printed customized porous acetabular components for reconstruction of extensive acetabular bone defects during primary total hip arthroplasty (THA).
METHODS:
The clinical data of 8 patients with extensive acetabular bone defects, who were treated with 3D-printed individualized porous acetabular components between July 2018 and January 2022, were retrospectively analyzed. The cohort comprised 4 males and 4 females with an average age of 48 years ranging from 34 to 56 years. Acetabular bone defects were classified as Paprosky type ⅢA in 3 cases and type ⅢB in 5 cases. The causes of acetabular destruction were hip tuberculosis (5 cases), pigmented villonodular synovitis (2 cases), and syphilitic arthritis (1 case). Visual analogue scale (VAS) score and Harris hip score (HHS) were used to evaluate the pain relief and hip function before and after operation. Reconstruction outcomes were further assessed by imaging results [X-ray film and Tomosynthesis Shimadzumetal artefact reduction technology (T-SMART)], and the mechanical properties were evaluated by finite element analysis.
RESULTS:
The operation time ranged from 174 to 195 minutes (mean, 187 minutes), and intraoperative blood loss ranged from 390 to 530 mL (mean, 465 mL). All 8 patients were follow-up 26-74 months (mean, 44 months). Among the 5 patients with tuberculosis, none experienced postoperative recurrence. At last follow-up, the VAS score was 0.3±0.5 and the HHS score was 87.9±3.7, both significantly improved compared to preoperative values ( t=25.170, P<0.001; t=-28.322, P<0.001). X-ray films at 2 years after operation demonstrated satisfactory matching between the 3D-printed customized acetabular component and the acetabulum. The postoperative center of rotation of the operated hip was shifted by (2.1±0.5) mm horizontally and (2.0±0.7) mm vertically relative to the contralateral side, with both offsets showing significant differences compared to preoperative values ( t=24.700, P<0.001; t=55.230, P<0.001). T-SMART imaging showed satisfactory osseointegration at the implant-host bone interface. No complications such as aseptic loosening or screw breakage was observed during follow-up. Finite element analysis showed that the acetabular component had good mechanical properties.
CONCLUSION
The application of 3D-printed individualized porous acetabular components in the reconstruction of extensive acetabular bone defects demonstrated precise anatomical reconstruction, stable mechanical support, and good functional performance in short-term follow-up, offering a potential alternative for acetabular defect reconstruction in primary THA.
Humans
;
Middle Aged
;
Male
;
Female
;
Printing, Three-Dimensional
;
Arthroplasty, Replacement, Hip/instrumentation*
;
Acetabulum/diagnostic imaging*
;
Adult
;
Follow-Up Studies
;
Retrospective Studies
;
Hip Prosthesis
;
Prosthesis Design
;
Porosity
;
Treatment Outcome
;
Plastic Surgery Procedures/methods*
6.Clinical characteristics of trimethoprim-sulfamethoxazole-induced rash during treatment of pertussis in children.
Bing-Song WANG ; Kai-Hu YAO ; Xian-Yi ZHANG ; Jing WU ; Fei YING ; Li-Min DONG
Chinese Journal of Contemporary Pediatrics 2025;27(10):1227-1232
OBJECTIVES:
To study the clinical characteristics of rashes induced by trimethoprim-sulfamethoxazole (TMP-SMZ) in children treated for pertussis and to inform safe medication practices.
METHODS:
A retrospective analysis was conducted on 238 children diagnosed with pertussis and treated with TMP-SMZ at Wuhu First People's Hospital from January to August 2024. The incidence and clinical features of rashes were summarized.
RESULTS:
Of 238 children, 34 (14.3%) developed rashes; 19 (55.9%) were boys, and the 5 to <10-year age group accounted for the highest proportion (70.6%, 24/34). A history of allergic disease was present in 50.0% (17/34). Rashes typically appeared on or after day 7 of therapy (82%, 28/34) and were predominantly erythematous or maculopapular eruptions (97%, 33/34); 71% (24/34) were pruritic. Fever occurred in 56% (19/34); among those who were tested for respiratory viruses, 77% (10/13) were positive for viruses such as rhinovirus and adenovirus. After discontinuation of TMP-SMZ, rashes resolved within 3 days in 97% (33/34) of patients (41% within 1 day; 56% within more than 1 but within 3 days). There was no significant difference in rash incidence between photoprotection and non-photoprotection groups (P>0.05).
CONCLUSIONS
TMP-SMZ for pertussis can induce rashes, particularly in children aged 5 to <10 years. The eruption is usually a pruritic erythematous or maculopapular rash, with over half of cases accompanied by fever and frequent concomitant viral infections. Most rashes resolve within 3 days after drug withdrawal. The potential association between the rash and sun exposure warrants further investigation.
Humans
;
Male
;
Child, Preschool
;
Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use*
;
Child
;
Female
;
Exanthema/chemically induced*
;
Retrospective Studies
;
Infant
;
Whooping Cough/drug therapy*
;
Adolescent
7.Brain function and connection in patients with refractory overactive bladder and healthy population: Analysis based on resting-state functional MRI.
Yu-Wei ZHANG ; Si-Yi FU ; Yu-Min LIU ; Hui-Hui SONG ; Peng JIANG ; Jia XU ; Bin HU
National Journal of Andrology 2025;31(1):39-44
OBJECTIVE:
To investigate the characteristics of central nervous system regulation in patients with refractory overactive bladder (rOAB) using resting-state functional magnetic resonance imaging (rs-fMRI), and to analyze the differences in brain function and connection between the patients and healthy population.
METHODS:
From May 1 to November 30, 2024, we performed rs-fMRI for 47 rOAB patients and another 47 matched healthy controls, documented relevant clinical data from all the participants and obtained their Overactive Bladder Symptom Scores (OABSS) and Overactive Bladder Questionnaire (OAB-Q) scores. Based on rs-fMRI, we compared the results of Independent Component Analysis (ICA), amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo) and degree centrality (DC) between the rOAB patients and healthy controls.
RESULTS:
The rOAB patients, in comparison with the healthy controls, showed dramatically higher daytime urination frequency (11.64 ± 3.85) vs (5.76 ± 0.91), nighttime urination frequency (3.72 ± 1.64) vs (0.31 ± 0.47), OABSS (8.22 ± 2.21) vs (0.64±0.78), OAB-Q1 score (20.85 ± 5.28) vs (6.78 ± 1.04), and OAB-Q2 score (45.04 ± 12.11) vs (14.51 ± 1.66) (all P<0.01). No statistically significant differences were observed in the results of ICA and ALFF between the right superior frontal and right middle frontal regions in the rOAB patients (P>0.05), but fALFF, ReHo and DC were significantly decreased in the patients compared with those in the healthy controls (P<0.01).
CONCLUSION
Compared with healthy population, the functions and connection of the frontal superior right and frontal middle right brain regions in rOAB patients are significantly down-regulated, which may serve as new therapeutic targets.
Humans
;
Urinary Bladder, Overactive/physiopathology*
;
Magnetic Resonance Imaging
;
Brain/physiopathology*
;
Female
;
Male
;
Adult
;
Surveys and Questionnaires
;
Case-Control Studies
;
Middle Aged
;
Rest
;
Brain Mapping
8.Exploring urban versus rural disparities in atrial fibrillation: prevalence and management trends among elderly Chinese in a screening study.
Wei ZHANG ; Yi CHEN ; Lei-Xiao HU ; Jia-Hui XIA ; Xiao-Fei YE ; Wen-Yuan-Yue WANG ; Xin-Yu WANG ; Quan-Yong XIANG ; Qin TAN ; Xiao-Long WANG ; Xiao-Min YANG ; De-Chao ZHAO ; Xin CHEN ; Yan LI ; Ji-Guang WANG ; FOR THE IMPRESSION INVESTIGATORS AND COORDINATORS
Journal of Geriatric Cardiology 2025;22(2):246-254
BACKGROUND:
Atrial fibrillation (AF) is a common cardiac arrhythmia in the elderly. This study aimed to evaluate urban-rural disparities in its prevalence and management in elderly Chinese.
METHODS:
Consecutive participants aged ≥ 65 years attending outpatient clinics were enrolled for AF screening using handheld single-lead electrocardiogram (ECG) from April 2017 to December 2022. Each ECG rhythm strip was reviewed from the research team. AF or uninterpretable single-lead ECGs were referred for 12-lead ECG. Primary study outcome comparison was between rural and urban areas for the prevalence of AF. The Student's t-test was used to compare mean values of clinical characteristics between rural and urban participants, while the Pearson's chi-square test was used to compare between-group proportions. Multivariate stepwise logistic regression analysis was performed to estimate the association between AF and various patient characteristics.
RESULTS:
The 29,166 study participants included 13,253 men (45.4%) and had a mean age of 72.2 years. The 7073 rural participants differed significantly (P ≤ 0.02) from the 22,093 urban participants in several major characteristics, such as older age, greater body mass index, and so on. The overall prevalence of AF was 4.6% (n = 1347). AF was more prevalent in 7073 rural participants than 22,093 urban participants (5.6% vs. 4.3%, P < 0.01), before and after adjustment for age, body mass index, blood pressure, pulse rate, cigarette smoking, alcohol consumption and prior medical history. Multivariate logistic regression analysis identified overweight/obesity (OR = 1.35, 95% CI: 1.17-1.54) in urban areas and cigarette smoking (OR = 1.62, 95% CI: 1.20-2.17) and alcohol consumption (OR = 1.42, 95% CI: 1.04-1.93) in rural areas as specific risk factors for prevalent AF. In patients with known AF in urban areas (n = 781) and rural areas (n = 338), 60.6% and 45.9%, respectively, received AF treatment (P < 0.01), and only 22.4% and 17.2%, respectively, received anticoagulation therapy (P = 0.05).
CONCLUSIONS
In China, there are urban-rural disparities in AF in the elderly, with a higher prevalence and worse management in rural areas than urban areas. Our study findings provide insight for health policymakers to consider urban-rural disparity in the prevention and treatment of AF.
9.USP51/GRP78/ABCB1 axis confers chemoresistance through decreasing doxorubicin accumulation in triple-negative breast cancer cells.
Yang OU ; Kun ZHANG ; Qiuying SHUAI ; Chenyang WANG ; Huayu HU ; Lixia CAO ; Chunchun QI ; Min GUO ; Zhaoxian LI ; Jie SHI ; Yuxin LIU ; Siyu ZUO ; Xiao CHEN ; Yanjing WANG ; Mengdan FENG ; Hang WANG ; Peiqing SUN ; Yi SHI ; Guang YANG ; Shuang YANG
Acta Pharmaceutica Sinica B 2025;15(5):2593-2611
Recent studies have indicated that the expression of ubiquitin-specific protease 51 (USP51), a novel deubiquitinating enzyme (DUB) that mediates protein degradation as part of the ubiquitin‒proteasome system (UPS), is associated with tumor progression and therapeutic resistance in multiple malignancies. However, the underlying mechanisms and signaling networks involved in USP51-mediated regulation of malignant phenotypes remain largely unknown. The present study provides evidence of USP51's functions as the prominent DUB in chemoresistant triple-negative breast cancer (TNBC) cells. At the molecular level, ectopic expression of USP51 stabilized the 78 kDa Glucose-Regulated Protein (GRP78) protein through deubiquitination, thereby increasing its expression and localization on the cell surface. Furthermore, the upregulation of cell surface GRP78 increased the activity of ATP binding cassette subfamily B member 1 (ABCB1), the main efflux pump of doxorubicin (DOX), ultimately decreasing its accumulation in TNBC cells and promoting the development of drug resistance both in vitro and in vivo. Clinically, we found significant correlations among USP51, GRP78, and ABCB1 expression in TNBC patients with chemoresistance. Elevated USP51, GRP78, and ABCB1 levels were also strongly associated with a poor patient prognosis. Importantly, we revealed an alternative intervention for specific pharmacological targeting of USP51 for TNBC cell chemosensitization. In conclusion, these findings collectively indicate that the USP51/GRP78/ABCB1 network is a key contributor to the malignant progression and chemotherapeutic resistance of TNBC cells, underscoring the pivotal role of USP51 as a novel therapeutic target for cancer management.
10.A thermo-sensitive hydrogel targeting macrophage reprogramming for sustained osteoarthritis pain relief.
Yue LIU ; Kai ZHOU ; Xinlong HE ; Kun SHI ; Danrong HU ; Chenli YANG ; Jinrong PENG ; Yuqi HE ; Guoyan ZHAO ; Yi KANG ; Yujun ZHANG ; Yue'e DAI ; Min ZENG ; Feier XIAN ; Wensheng ZHANG ; Zhiyong QIAN
Acta Pharmaceutica Sinica B 2025;15(11):6034-6051
Osteoarthritis (OA) causes chronic pain that significantly impairs quality of life, with current treatments often proving insufficient and accompanied by adverse effects. Recent research has identified the dorsal root ganglion (DRG) and its resident macrophages as crucial mediators of chronic OA pain through neuroinflammation driven by macrophage polarization. We present a novel injectable thermo-sensitive hydrogel system, KAF@PLEL, designed to deliver an anti-inflammatory peptide (KAF) specifically to the DRG. This biodegradable hydrogel enables sustained KAF release, promoting the reprogramming of DRG macrophages from pro-inflammatory to anti-inflammatory phenotypes. Through comprehensive in vitro and in vivo studies, we evaluated the hydrogel's biocompatibility, effects on macrophage polarization, and therapeutic efficacy in chronic OA pain management. The system demonstrated significant capabilities in preserving macrophage mitochondrial function, suppressing neuroinflammation, alleviating chronic OA pain, reducing cartilage degradation, and improving motor function in OA rat models. The sustained-release properties of KAF@PLEL enabled prolonged therapeutic effects while minimizing systemic exposure and side effects. These findings suggest that KAF@PLEL represents a promising therapeutic approach for improving outcomes in OA patients through targeted, sustained treatment.

Result Analysis
Print
Save
E-mail