1.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
2.Role and mechanism of caffeic acid in a mouse model of severe acute pancreatitis
Siyu XU ; Tao LIU ; Lulu LAN ; Yining XUE ; Wei WEI ; Yi HAN ; Sucheng MU ; Haiyan SONG ; Shilin DU
Journal of Clinical Hepatology 2025;41(4):722-730
ObjectiveTo investigate the effect and potential mechanism of caffeic acid (CA) on severe acute pancreatitis (SAP) induced by caerulein combined with lipopolysaccharide (LPS), and to provide a basis for the research on novel drugs for the treatment of SAP. MethodsC57BL/6J mice, aged 6 weeks, were divided into control group, model group, CA group, and octreotide acetate (OA) group, with 6 mice in each group. The mice in the control group were given injection of normal saline, and those in the other groups were given intraperitoneal injection of caerulein combined with LPS to establish a mouse model of SAP. At 1 hour after the first injection of caerulein, the mice in the CA group and the OA group were given intraperitoneal injection of CA or subcutaneous injection of OA at an interval of 8 hours. The general status of the mice was observed after 24 hours of modeling, and serum, pancreas, lung, and colon samples were collected. HE staining was used to observe the histopathological changes of the pancreas and lungs, and the serum levels of α-amylase, lipase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), alanine aminotransferase, aspartate aminotransferase, and creatinine were measured. RT-PCR was used to measure the expression of proinflammatory factors in the pancreas and lungs; myeloperoxidase (MPO) immunohistochemistry was used to observe the degree of neutrophil infiltration; Western blot was used to measure the activation of nuclear factor-kappa B (NF-κB) and the level of citrullinated histone H3 (CitH3), a marker for the formation of neutrophil extracellular traps (NETs), in the pancreas and lungs, as well as the expression level of ZO-1 in colon tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the Dunnett’s t-test was used for further comparison between two groups. ResultsCompared with the control group, the model group had severe injury in the pancreas and lungs and significant increases in the activity of serum α- amylase and lipase and the levels of the proinflammatory cytokines IL-6, interleukin-1β (IL-1β), and TNF-α in serum and lung tissue (all P<0.05), as well as significant increases in NF-κB activation, neutrophil infiltration, and the formation of NETs in the pancreas and lungs (all P<0.05). Compared with the model group, the CA group had alleviated pathological injury of the pancreas and lungs and significant reductions in the activity of serum α-amylase and the levels of the proinflammatory cytokines IL-6, IL-1β, and TNF-α in serum and lung tissue (all P<0.05), as well as significant reductions in NF-κB activation, neutrophil infiltration, and the formation of NETs in the pancreas and lungs (all P<0.05). ConclusionCA can alleviate SAP induced by caerulein combined with LPS in mice, possibly by inhibiting neutrophil recruitment and the formation of NETs.
3.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
4.The systemic inflammatory response index as a risk factor for all-cause and cardiovascular mortality among individuals with coronary artery disease: evidence from the cohort study of NHANES 1999-2018.
Dao-Shen LIU ; Dan LIU ; Hai-Xu SONG ; Jing LI ; Miao-Han QIU ; Chao-Qun MA ; Xue-Fei MU ; Shang-Xun ZHOU ; Yi-Xuan DUAN ; Yu-Ying LI ; Yi LI ; Ya-Ling HAN
Journal of Geriatric Cardiology 2025;22(7):668-677
BACKGROUND:
The association of systemic inflammatory response index (SIRI) with prognosis of coronary artery disease (CAD) patients has never been investigated in a large sample with long-term follow-up. This study aimed to explore the association of SIRI with all-cause and cause-specific mortality in a nationally representative sample of CAD patients from United States.
METHODS:
A total of 3386 participants with CAD from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were included in this study. Cox proportional hazards model, restricted cubic spline (RCS), and receiver operating characteristic curve (ROC) were performed to investigate the association of SIRI with all-cause and cause-specific mortality. Piece-wise linear regression and sensitivity analyses were also performed.
RESULTS:
During a median follow-up of 7.7 years, 1454 all-cause mortality occurred. After adjusting for confounding factors, higher lnSIRI was significantly associated with higher risk of all-cause (HR = 1.16, 95% CI: 1.09-1.23) and CVD mortality (HR = 1.17, 95% CI: 1.05-1.30) but not cancer mortality (HR = 1.17, 95% CI: 0.99-1.38). The associations of SIRI with all-cause and CVD mortality were detected as J-shaped with threshold values of 1.05935 and 1.122946 for SIRI, respectively. ROC curves showed that lnSIRI had robust predictive effect both in short and long terms.
CONCLUSIONS
SIRI was independently associated with all-cause and CVD mortality, and the dose-response relationship was J-shaped. SIRI might serve as a valid predictor for all-cause and CVD mortality both in the short and long terms.
5.Effects of liver fibrosis induced by iron overload on M2 polarization of macrophages in mice.
Jiawen YU ; Yi ZHOU ; Chunmei QIAN ; Lan MU ; Renye QUE
Journal of Southern Medical University 2025;45(4):684-691
OBJECTIVES:
To observe the evolution of intrahepatic macrophage polarization in mice with liver fibrosis induced by iron overload.
METHODS:
Thirty-two C57BL/6 mice (6-8 weeks) were randomized into control group (n=8) and liver fibrosis model group (n=24) induced by aidly intraperitoneal injection of iron dextran. At the 3rd, 5th, and 7th weeks of modeling, 8 mice in the model group were sacrificed for observing liver fibrosis using Masson, Sirius Red and immunohistochemical staining and detecting serum levels of ALT, AST and the levels of serum iron, ferritin, liver total Fe and ferrous Fe. iNOS+/F4/80+ cells and CD206+/F4/80+ cells were detected by double immunofluorescence assay to observe the proportion and distribution of M1 and M2 macrophages. The hepatic expressions of Arg-1, iNOS, IL-6, IL-10, and TNF‑α proteins were detected using Western blotting or ELISA, and the expression of CD206 mRNA was detected using RT-PCR.
RESULTS:
The mice in the model group showed gradual increase of fibrous tissue hyperplasia in the portal area over time, structural destruction of the hepatic lobules and formation of pseudolobules. With the passage of time during modeling, the rat models showed significantly increased hepatic expressions of α-SMA and COL-1, elevated serum levels of ALT, AST, Fe, ferritin, and increased liver total Fe and ferrous Fe levels. The expressions of M1 polarization markers IL-6, TNF‑α, and iNOS all increased with time and reached their peak levels at the 3rd week; The expressions of M2 polarization markers (IL-10 and Arg-1 proteins and CD206 mRNA) significantly increased in the 3rd week and but decreased in the 5th and 7th weeks.
CONCLUSIONS
Iron overload promotes M1 polarization of macrophages in mice. Liver fibrosis in the early stage promotes M2 polarization of macrophages but negatively regulate M2 polarization at later stages.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Iron Overload/pathology*
;
Macrophages/metabolism*
;
Male
;
Liver Cirrhosis/etiology*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Liver/pathology*
;
Interleukin-6/metabolism*
;
Mannose Receptor
;
Tumor Necrosis Factor-alpha/metabolism*
;
Mannose-Binding Lectins/metabolism*
;
Arginase
6.Current situation of clinical trial registration in acupuncture anesthesia: A scoping review.
Yue LI ; You-Ning LIU ; Zhen GUO ; Mu-En GU ; Wen-Jia WANG ; Yi ZHU ; Xiao-Jun ZHUANG ; Li-Ming CHEN ; Jia ZHOU ; Jing LI
Journal of Integrative Medicine 2025;23(3):256-263
BACKGROUND:
Modern acupuncture anesthesia is a combination of Chinese and Western medicine that integrates the theories of acupuncture with anesthesia. However, some clinical studies of acupuncture anesthesia lack specific descriptions of randomization, allocation concealment, and blinding processes, with subsequent systematic reviews indicating a risk of bias.
OBJECTIVE:
Clinical trial registration is essential for the enhancement of the quality of clinical trials. This study aims to summarize the status of clinical trial registrations for acupuncture anesthesia listed on the World Health Organization International Clinical Trials Registry Platform (ICTRP).
SEARCH STRATEGY:
We searched the ICTRP for clinical trials related to acupuncture anesthesia registered between January 1, 2001 and May 31, 2023. Additionally, related publications were retrieved from PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Wanfang Data. Registrations and publications were analyzed for consistency in trial design characteristics.
INCLUSION CRITERIA:
Clinical trials that utilized one of several acupuncture-related therapies in combination with pharmacological anesthesia during the perioperative period were eligible for this review.
DATA EXTRACTION AND ANALYSIS:
Data extracted from articles included type of surgical procedure, perioperative symptoms, study methodology, type of intervention, trial recruitment information, and publication information related to clinical enrollment.
RESULTS:
A total of 166 trials related to acupuncture anesthesia from 21 countries were included in the analysis. The commonly reported symptoms in the included studies were postoperative nausea and vomiting (19.9%) and postoperative pain (13.3%). The concordance between the publications and the trial protocols in the clinical registry records was poor, with only 31.7% of the studies being fully compatible. Inconsistency rates were high for sample size (39.0%, 16/41), blinding (36.6%, 15/41), and secondary outcome indicators (24.4%, 10/41).
CONCLUSION
The volume of acupuncture anesthesia clinical trials registered in international trial registries over the last 20 years is low, with insufficient disclosure of results. Postoperative nausea and vomiting as well as postoperative pain, are the most investigated for acupuncture intervention. Please cite this article as: Li Y, Liu YN, Guo Z, Gu ME, Wang WJ, Zhu Y, Zhuang XJ, Chen LM, Zhou J, Li J. Current situation of clinical trial registration in acupuncture anesthesia: A scoping review. J Integr Med. 2025; 23(3): 256-263.
Humans
;
Acupuncture Analgesia
;
Acupuncture Therapy
;
Anesthesia
;
Clinical Trials as Topic
;
Registries
7. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG
8. Mechanism of action of formononetin in alleviating allergic asthma through DRP1-NLRP3 signaling pathway
Mu CHEN ; Qiao-Yun BAI ; Yi-Lan SONG ; Jiao CHEN ; Yong-De JIN ; Guang-Hai YAN ; Jiao CHEN ; Yong-De JIN ; Qiao-Yun BAI ; Yi-Lan SONG ; Guang-Hai YAN
Chinese Pharmacological Bulletin 2024;40(3):529-536
Aim To investigate the mechanism by which formononetin (FN) inhibits mitochondrial dynamic-related protein 1 (DRP1) -NLRP3 axis via intervening the generation of ROS to reduce allergic airway inflammation. Methods In order to establish allergic asthma mouse model, 50 BALB/c mice aged 8 weeks were divided into the control group, model group, FN treatment group and dexamethasone group after ovalbumin (OVA) induction. Airway inflammation and collagen deposition were detected by HampE and Masson staining. Th2 cytokines and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA, ROS in BEAS-2B cells was assessed by DCFH-DA staining, DRP1 expression in lung tissue and BEAS-2B cells was detected by immunohistochemistry and immunofluorescence, and the DRP1-NLRP3 pathway was analyzed by immunoblotting. Results FN treatment could effectively ameliorate the symptoms of asthmatic mouse model, including reducing eosinophil accumulation, airway collagen deposition, decreasing Th2 cytokine and IgE levels, reducing ROS and MDA production, increasing SOD and CAT activities, and regulating DRP1-NLRP3 pathway-related protein expression, thereby relieving inflammation. Conclusion FN ameliorates airway inflammation in asthma by regulating DRP1-NLRP3 pathway.
9.Rapid Screening of 34 Emerging Contaminants in Surface Water by UHPLC-Q-TOF-MS
Chen-Shan LÜ ; Yi-Xuan CAO ; Xiao-Xi MU ; Hai-Yan CUI ; Tao WANG ; Zhi-Wen WEI ; Ke-Ming YUN ; Meng HU
Journal of Forensic Medicine 2024;40(1):30-36
Objective To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS).Methods The pretreatment conditions of solid phase extraction(SPE)were op-timized by orthogonal experimental design and the surface water samples were concentrated and ex-tracted by Oasis? HLB and Oasis? MCX SPE columns in series.The extracts were separated by Kine-tex? EVO C18 column,with gradient elution of 0.1%formic acid aqueous solution and 0.1%formic acid methanol solution.Q-TOF-MS'fullscan'and'targeted MS/MS'modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion,prod-uct ion and retention times.Results The 34 emerging contaminants exhibited good linearity in the con-centration range respectively and the correlation coefficients(r)were higher than 0.97.The limit of de-tection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%.The intra-day precision was 0.78%-18.70%.The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected,with a concentration range of 1.93-157.71 ng/L.Conclusion The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.
10.Inhibition of Oxidative Stress of Sciatic Nerve in Diabetic Rats by Tangbikang Granules Regulating AMPK/PGC-1α/SIRT3 Signaling Pathway
Gang LIU ; Yaqi ZHANG ; Lingling QIN ; Chengfei ZHANG ; Qiue ZHANG ; Huizhong BAI ; Yi ZHAO ; Tonghua LIU ; Xiaohong MU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(6):75-82
ObjectiveTo investigate the effect of Tangbikang granules on oxidative stress of sciatic nerve in diabetic rats by regulating adenylate activated protein kinase/peroxisome proliferator-activated receptor γ coactivator-1α/mitochondrial Sirtuins 3 (AMPK/PGC-1α/SIRT3) signaling pathway. MethodThe spontaneous obesity type 2 diabetes model was established using ZDF rats. After modeling, they were randomly divided into high, medium, and low dose Tangbikang granule groups (2.5, 1.25, 0.625 g·kg-1·d-1) and lipoic acid group (0.026 8 g·kg-1·d-1), and the normal group was set up. The rats were administered continuously for 12 weeks after modeling. The blood glucose of rats was detected before intervention and at 4, 8, 12 weeks after intervention. At the 12th week, motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), nerve blood flow velocity, mechanical pain threshold, and thermal pain threshold were detected. The sciatic nerve was taken for hematoxylin-eosin (HE) staining to observe the tissue morphology. The ultrastructure of the sciatic nerve was observed by transmission electron microscope. The expression levels of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in sciatic nerve were determined by enzyme-related immunosorbent assay (ELISA). The mRNA expressions of AMPKα, AMPKβ, PGC-1α, and SIRT3 in sciatic nerve were determined by real-time polymerase chain reaction (Real-time PCR). ResultCompared with the normal group, fasting blood glucose in the model group was increased at each time point (P<0.01). The mechanical pain threshold was decreased (P<0.05), and the incubation time of the hot plate was extended (P<0.01). MNCV, SNCV, and nerve blood flow velocity decreased (P<0.05). The expression level of SOD was decreased (P<0.01). The expression levels of MDA, IL-1β, and TNF-α were increased (P<0.01). The mRNA expression levels of AMPKα, AMPKβ, PGC-1α, and SIRT3 were decreased (P<0.01). The structure of sciatic nerve fibers in the model group was loose, and the arrangement was disordered. The demyelination change was obvious. Compared with the model group, the fasting blood glucose of rats in the high dose Tangbikang granule group was decreased after the intervention of eight weeks and 12 weeks (P<0.01). The mechanical pain threshold increased (P<0.05). The incubation time of the hot plate was shortened (P<0.01). MNCV, SNCV, and Flux increased (P<0.05). The expression level of SOD was increased (P<0.01). The expression levels of MDA, IL-1β, and TNF-α were decreased (P<0.01). The mRNA expression levels of AMPKα, AMPKβ, PGC-1α, and SIRT3 were increased (P<0.01). The sciatic nerve fibers in the high-dose Tangbikang granule group were tighter and more neatly arranged, with only a few demyelinating changes. The high, medium, and low dose Tangbikang granule groups showed a significant dose-effect trend. ConclusionTangbikang granules may improve sciatic nerve function in diabetic rats by regulating AMPK/PGC-1α/SIRT3 signaling pathway partly to inhibit oxidative stress.

Result Analysis
Print
Save
E-mail