1.Perceived stress and occupational burnout among hospital staff in Guangzhou tertiary hospitals
Wenli ZHOU ; Xiaoyi WU ; Yichen YE ; Liman WU ; Biyun CHEN ; Yi SHEN
Journal of Environmental and Occupational Medicine 2025;42(3):354-359
Background Staff in tertiary hospitals are a high-risk group for occupational burnout. Timely identification and precise intervention are crucial for improving healthcare service quality. However, comparative studies on perceived stress and occupational burnout among hospital staff in different positions are lacking. Objective To describe the status of perceived stress and occupational burnout among hospital staff in different positions and compare the differences, explore the relationship between perceived stress and occupational burnout, and identify the influencing factors of occupational burnout. Methods In May 2022,
2.Treating premature ejaculation combined with anxiety and depression based on the "four-dimensional integration" of the "holism of body and spirit" theory
Yi WEI ; Zhiming HONG ; Junfeng QIU ; Zilong CHEN ; Hao KUANG ; Yangling ZENG ; Quan WANG ; Wenbin ZHOU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):418-423
Premature ejaculation refers to a sexual dysfunction in which men experience a short intravaginal ejaculation latency and a lack of control over ejaculation during sexual activity. The onset of this condition is often accompanied by anxiety and depression, which can seriously affect the quality of the patient′s sexual life and the relationship between partners. Based on the "integration of body and spirit" theory in traditional Chinese medicine, our team believes that this condition is a comorbidity of physical and spiritual factors. We propose that the core pathogenesis of this disease lies in the "loss of form and essence, impairment of spirit, and depression of the mind, "while the primary treatment principle involves "nourishing form and regulating spirit." As a result, a new diagnosis and treatment approach of "four-dimensional integration" is summarized in this study. The disease is treated through the four dimensions of shape, body, spirit, and emotion. Traditional Chinese medicine is used to adjust the shape in cases where the physical form is damaged. For individuals with depression of heart and liver qi, the treatment focuses on soothing the heart and smoothing liver qi, and the modified Wangyou Powder and Xuanzhi Decoction is used. In cases where the heart and kidney function are compromised, the treatment involves nourishing both the heart and kidney while restoring interaction between the heart and the kidney, and modified Jihuo Yansi Elixir is used. To reduce the sensitivity of the glans penis, the patient′s body is washed with a traditional Chinese medicine formula, and a delicate fumigation formula is decocted for external washing. For those who are not in tune with their god, psychological counseling can be used to regulate their spirit and advocate "self-partner" and psychotherapy. If there are issues with intimacy, partners should focus on cooperating during foreplay, sexual intercourse, and post-coital interactions. Overall, the treatment aims to harmonize the body and spirit, addressing both physical and psychological factors through a comprehensive, multi-dimensional approach. This method provides new perspectives and ideas for the clinical diagnosis and treatment of this condition.
3.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
4.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
5.Effects of superoxide dismutase inhibition of AFP expression on the malignant biological behavior of PLC/PRF/5 liver cancer cells
Yi CHEN ; Baoying CHEN ; Yuli ZHOU ; Haixia XU ; Yu CAO ; Yue GU ; Mingyue ZHU ; Mengsen LI
China Pharmacy 2025;36(17):2120-2126
OBJECTIVE To explore the effect of superoxide dismutase (SOD) administration on the malignant behavior of PLC/PRF/5 liver cancer cells, and analyze the correlation between SOD and alpha-fetoprotein (AFP) expression, to provide new ideas for targeting AFP with SOD as a drug for hepatocellular carcinoma. METHODS Normal human liver cells L-02, AFP- negative human liver cancer cells HLE, and AFP-positive human liver cancer cells PLC/PRF/5 were used as experimental cells. Western blot assay and SOD activity detection kit were used to detect the expression of AFP, SOD and activity of SOD in cells before and after changing AFP expression; the effects of different concentrations of SOD [0 (control), 0.188, 0.375, 0.75, 1.5, 3 U/mL] administration on the migration and proliferation of PLC/PRF/5 cells were detected using cell scratch assay and CCK-8 assay. The effects of SOD overexpression on the expression of malignant biological behavior-related proteins AFP and sarcoma virus protein (Src) in PLC/PRF/5 cells were detected using Western blot. RESULTS Compared with L-02 group and HLE group, the expression levels of SOD1 and SOD2, and SOD activity in PLC/PRF/5 cells were significantly reduced (P<0.05). After down-regulating AFP expression in PLC/PRF/ 5 cells, compared with PLC/PRF/5 group, the expression levels of SOD1 and SOD2, as well as SOD activity, were significantly increased in the PLC/PRF/5-shAFP group (low-expression) (P<0.05). After 48 hours of SOD treatment, compared with control group, the scratch healing rates of PLC/PRF/5 cells in the 0.375, 0.75, 1.5 and 3 U/mL SOD groups were significantly reduced (P<0.05); after 72 hours of SOD treatment, compared with control group, the scratch healing rates of PLC/PRF/5 cells in the 0.375, 0.75, and 1.5 U/mL SOD groups were significantly reduced (P<0.05 or P<0.01). Compared with control group, proliferation rates of PLC/PRF/5 cells were significantly reduced in the 0.375, 0.75, 1.5 and 3 U/mL SOD groups (P<0.05 or P<0.01). Compared with the PLC/PRF/5 group before up-regulating SOD1 and SOD2 expression, the expression levels of AFP and Src in the PLC/PRF/5-oeSOD1 and PLC/PRF/5-oeSOD2 groups (over-expression) after up-regulating SOD1 and SOD2 expression were significantly reduced (P<0.05). CONCLUSIONS A certain concentration of SOD can inhibit malignant behavior such as migration and proliferation of PLC/PRF/5 cells, and the expression level and activity of SOD are negatively correlated with AFP.
6.Subchronic exposure to benzoapyrene results in lung tissue cell damage caused by ferroptosis in mice
Chaoli ZHOU ; Shihan DING ; Hui HE ; Zhirui MA ; Jie CHEN ; Xingdi GUO ; Yi LYU ; Jinping ZHENG
Journal of Environmental and Occupational Medicine 2025;42(8):971-977
Background Exposure to benzo[a]pyrene (BaP) may impair lung function through various mechanisms; however, it remains uncertain whether BaP induces ferroptosis in lung tissue cells, resulting in lung function impairment. Objective To investigate the ferroptosis of lung tissue cells triggered by subchronic BaP exposure in mice and its correlation with lung injury, and to explore the function of ferroptosis in BaP-induced lung tissue damage. Method Seventy-two healthy 3-weeks-old male C57BL/6J mice were acclimatized for 1 week and then randomly divided into six groups: control group (corn oil 10 mL·kg−1), low-dose BaP group (2.5 mg·kg−1), medium-dose BaP group (5 mg·kg−1), high-dose BaP group (10 mg·kg−1), BaP+ferrostatin-1 (Fer-1) group (10 mg·kg−1+1 mg·kg−1), and Fer-1 group (1 mg·kg−1), with 12 mice each group. Corn oil and BaP were administered via gavage every other day, followed by an intraperitoneal injection of Fer-1 the subsequent day, throughout a period of 90 d. Whole-body plethysmography was applied to detect lung function; hematoxylin-eosin staining (HE) and Masson staining were used to observe lung tissue injury and fibrosis; microscopy of alveolar epithelial cells was conducted to reveal mitochondrial morphology; biochemical assays were used to measure the content of tissue iron, malondialdehyde (MDA), and glutathione (GSH), as well as the activity of glutathione peroxidase (GSH-Px); Western blotting and real-time quantitative PCR (RT-qPCR) analyses were performed to reveal the protein and mRNA expression of ferroptosis markers. Results Compared to the control group, the high-dose BaP group showed a significant increase in expiration time (Te) (P<0.01), and a significant decrease in ratio rate of achieving peak expiratory flow (Rpef), tidal volume (TVb), peak inspiratory flow (PIF), minute volume (MVb), and peak expiratory flow (PEF) (P<0.05 or 0.01). Based on the results of HE and Masson staining, partial destruction of alveolar structures, thickening of alveolar walls, infiltration of inflammatory cells, significant thickening of tracheal walls and a large deposition of collagen fibers in lung tissue were observed in the medium- and high-dose BaP groups. By microscopy, the alveolar epithelial cells exposed to low-dose BaP showed condensed chromatin, and the mitochondria exposed to medium and high-dose BaP showed wrinkles, increased mitochondrial membrane density, and diminished mitochondrial cristae. Compared to the control group, in the medium- and high-dose BaP groups, the lung tissue iron content and the expression levels of ACSL4 protein and mRNA significantly elevated (P<0.01 or 0.05), while the mRNA expression level of SLC7A11 significantly decreased (P<0.05); in the high-dose BaP group, the MDA content, COX2 protein, and PTGS2 mRNA expression levels significantly increased (P<0.05 or 0.01), GSH content and GSH-Px activity, GPX4 protein and mRNA expression levels, and the expression level of SLC7A11 protein significantly decreased (P<0.01 or 0.05). The ferroptosis inhibitor Fer-1 markedly reversed respiratory function, morphology, mitochondrial alterations, and the aforementioned ferroptosis-related biochemical indicators. Conclusion Subchronic exposure to BaP can induce ferroptosis in mice lung tissue cells, resulting in compromised lung function.
7.Mediating effects of loneliness and depressive symptoms on family function and life satisfaction among rural elderly patients with chronic diseases
LI Zhonglian ; MO Xiangang ; QIN Suxia ; ZHOU Quanxiang ; ZHU Yafen ; MO Caiyun ; YI Aijing ; CHEN Juhai
Journal of Preventive Medicine 2025;37(6):551-556,561
Objective:
To analyze the mediating effects of loneliness and depressive symptoms on family functioning and life satisfaction among rural elderly patients with chronic diseases, so as to provide the basis for improving the life satisfaction of this population.
Methods:
Rural elderly patients with chronic diseases aged ≥60 years in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province were selected using a multi-stage stratified random cluster sampling method from June to September 2022. Basic information such as gender, age, and chronic diseases were collected. Family function, life satisfaction, loneliness and depressive symptoms were evaluated using Family Care Index Scale, the Satisfaction with Life Scale, the b-item Revised VCLA Loneliness Sale and the 15-item Geriatric Depression Scale, respectively. The structural equation model was constructed using Amos software to analyze the mediating effects of loneliness and depressive symptoms on the relationship between family function and life satisfaction. The Bootstrap method was employed to test the mediating effects.
Results:
A total of 1 145 rural elderly patients with chronic diseases were recruited, including 517 males (45.15%) and 628 females (54.85%). Among the participants, 657 individuals (57.38%) were aged 60-<71 years, and 540 individuals (47.16%) had three or more chronic diseases. The scores for family function, life satisfaction, loneliness, and depressive symptoms were (3.90±1.18), (18.88±5.25), (12.88±2.99), and (6.65±2.26), respectively. Mediating effect analysis showed that family function had a direct positive effect on life satisfaction (β=0.179, 95%CI: 0.126-0.231). It also indirectly positively influenced the life satisfaction of rural elderly patients with chronic diseases through the independent mediating effect of depressive symptoms (β=0.035, 95%CI: 0.021-0.054) and the chained mediating effect of loneliness and depressive symptoms (β=0.021, 95%CI: 0.013-0.030). The mediating effect of depressive symptoms accounted for 14.89% of the total effect, while the chained mediating effect of loneliness and depressive symptoms accounted for 8.94% of the total effect.
Conclusion
Good family function can directly enhance the life satisfaction of rural elderly patients with chronic diseases and can also indirectly improve their life satisfaction by reducing loneliness and depressive symptoms.
8.Trend in disease burden of injuries among children and adolescents in China from 1990 to 2021
GUO Shihong ; HUANG Jingjing ; CHEN Yi ; LI Qingqing ; LIU Chunting ; HE Yunyan ; MENG Tingting ; ZHOU Jiali
Journal of Preventive Medicine 2025;37(10):1069-1074
Objective:
To investigate the trend in disease burden of injuries among children and adolescents in China from 1990 to 2021, so as to provide a basis for formulating prevention and control strategies and reducing this disease burden.
Methods:
Data on mortality, disability-adjusted life years (DALY) rate, incidence, and prevalence of injuries among children and adolescents aged <20 years in China from 1990 to 2021 were collected from the Global Burden of Disease (GBD) 2021 database. All rates were standardized using the GBD 2021 world standard population. The trend in incidence of disease burden of injuries among children and adolescents across differents genders and ages from 1990 to 2021 was evaluated using average annual percent change (AAPC).
Results:
From 1990 to 2021, the standardized mortality (AAPC=-5.435%), standardized DALY rate (AAPC=-5.311%), standardized incidence (AAPC=-0.466%), and standardized prevalence (AAPC=-0.810%) of injuries among children and adolescents in China showed downward trends (all P<0.05). Among these, the standardized mortality of animal contact (AAPC=-9.138%) and the standardized DALY rate of medical side effects (AAPC=-8.389%) decreased at a relatively fast pace, while the standardized incidence of falls (AAPC=0.083%) and the standardized prevalence of exposure to natural forces (AAPC=2.656%) showed upward trends (all P<0.05). The standardized mortality, standardized DALY rate, standardized incidence and standardized prevalence of injuries were higher in males than in females. The trend in males showed a downward trend (all P<0.05), consistent with the total population. The crude incidence of injuries in the group aged 15-<20 years showed an upward trend (AAPC=0.391%, P<0.05), while the trend in the group aged 10-<15 years was not statistically significant (P>0.05). The crude incidence of injuries in the groups aged 5-<10 years and <5 years showed downward trends (AAPC=-0.488% and -2.275%, both P<0.05). In 2021, the <5 years age group had the highest crude mortality and crude DALY rate of injuries, at 13.94/100 000 and 1 257.26/100 000, respectively. The 15-<20 years age group exhibited the highest crude incidence and crude prevalence, at 4 874.05/100 000and 4 050.35/100 000, respectively. Drowning and falls were major components of the disease burden across all age groups.
Conclusions
From 1990 to 2021, the disease burden of injuries among children and adolescents in China showed an overall downward trend. The disease burden was consistently higher in males than in females. Children aged <5 years face a high risk of fatality and disability, while adolescents aged 15-<20 years experience a high incidence and frequency of injuries. Drowning and falls were key priorities for prevention and control.
9.Application of situational simulation combined with the debriefing-GAS method in the teaching of prenatal genetic counseling
Jingyu LIU ; Jingya ZHAO ; Xuan HUANG ; Linhuan HUANG ; Zhiming HE ; Yanmin LUO ; Haitian CHEN ; Yi ZHOU
Chinese Journal of Medical Education Research 2024;23(5):677-682
Objective:To investigate the application effect of situational simulation combined with the Debriefing-GAS method in the teaching of prenatal genetic counseling.Methods:A total of 30 medical students of the five- and eight-year programs in the classes of 2017 and 2018 who received genetic counseling training in The First Affiliated Hospital of Sun Yat-sen University from May 2021 to May 2022 were selected as research subjects, and situational simulation combined with the debriefing-GAS method was used for the teaching of prenatal genetic counseling. Assessment was performed by the teacher to evaluate the change in genetic counseling abilities during the teaching process, and a questionnaire survey was conducted to investigate the degree of satisfaction with teaching among the students. SPSS 26.0 software was used for data analysis; normally distributed continuous data were expressed as mean±standard deviation, non-normally distributed continuous data were expressed as M d(P 25,P75), and categorical data were expressed as frequency and rate; the paired samples t-test was used for comparison of assessment scores before and after teaching. Results:After teaching, there were significant increases in the assessment scores of genetic counseling [(74.5±18.6) points vs. (87.2±14.5) points, t=4.10, P<0.001] and comprehensive abilities such as clinical ability [(35.4±9.6) points vs. (41.1±6.9) points, t=3.72, P=0.001], doctor-patient communication [(17.5±4.6) points vs. (20.8±3.8) points, t=4.34, P<0.001], professional literacy [(11.0±2.5) points vs. (12.5±2.3) points, t=2.89, P=0.007], teamwork [(3.5±1.0) points vs. (4.2±0.8) points, t=3.67, P=0.001], and organizational effectiveness [(7.1±2.0) points vs. (8.3±1.7) points, t=2.94, P=0.006]. The questionnaire survey showed that the degree of satisfaction among students was rated above satisfaction for the reasonability of the implementation process and links of genetic counseling teaching [3.0 (3.0, 4.0) points], teaching quality [3.5 (3.0, 4.0) points], whether the teaching model could effectively increase the interest and initiative in learning [4.0 (3.0, 4.0) points], the improvement in theoretical knowledge [4.0 (3.0, 4.0) points], communication skills in genetic counseling [3.0 (3.0, 4.0) points], and the understanding of related techniques and application prospect [3.0 (3.0, 4.0) points]. However, two students (6.7%) thought that this teaching model could not efficiently reach teaching objectives, since the teaching process was slightly complicated. Conclusions:Situational simulation combined with the debriefing-GAS method has achieved a good effect in the teaching of prenatal genetic counseling and can help undergraduates to master the theoretical knowledge of prenatal genetic counseling and improve their comprehensive clinical abilities, with a relatively high degree of satisfaction, and therefore, it holds promise for clinical application.
10.Research progress on neurobiological mechanisms underlying antidepressant effect of ketamine
Dong-Yu ZHOU ; Wen-Xin ZHANG ; Xiao-Jing ZHAI ; Dan-Dan CHEN ; Yi HAN ; Ran JI ; Xiao-Yuan PAN ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1622-1627
Major depressive disorder(MDD)is a prevalent con-dition associated with substantial impairment and low remission rates.Traditional antidepressants demonstrate delayed effects,low cure rate,and inadequate therapeutic effectiveness for man-aging treatment-resistant depression(TRD).Several studies have shown that ketamine,a non-selective N-methyl-D-aspartate receptor(NMDAR)antagonist,can produce rapid and sustained antidepressant effects.Ketamine has demonstrated efficacy for reducing suicidality in TRD patients.However,the pharmaco-logical mechanism for ketamine's antidepressant effects remains incompletely understood.Previous research suggests that the an-tidepressant effects of ketamine may involve the monoaminergic,glutamatergic and dopaminergic systems.This paper provides an overview of the pharmacological mechanism for ketamine's anti-depressant effects and discuss the potential directions for future research.


Result Analysis
Print
Save
E-mail