1.Effect of Complanatoside A on the apoptosis of articular chondrocytes
Lu YIN ; Chuanfeng JIANG ; Junjie CHEN ; Ming YI ; Zihe WANG ; Houyin SHI ; Guoyou WANG ; Huarui SHEN
Chinese Journal of Tissue Engineering Research 2025;29(8):1541-1547
BACKGROUND:Chondrocyte apoptosis is an important factor in the development of osteoarthritis,and Complanatoside A has a flavonoid effect,which can inhibit apoptosis of various cells,but its effect on chondrocyte apoptosis and the mechanism of action are not clear. OBJECTIVE:To investigate the intrinsic association and mechanism of Complanatoside A in chondrocyte apoptosis based on the Wnt/β-catenin signaling pathway. METHODS:(1)The cartilage tissues of the femur and tibia transected during knee arthroplasty were collected,and chondrocytes were isolated,cultured in vitro,and identified.(2)Cell counting kit-8 was used to detect the optimal intervention concentration of Complanatoside A in the concentration range of 0-160 μmol/L.(3)Chondrocytes were divided into blank group,sodium nitroprusside(1.5 mmol/L)-induced group,and sodium nitroprusside(1.5 mmol/L)+Complanatoside A(5 μmol/L)group.The viability and apoptosis rate of the cells in each group were detected by cell counting kit-8 and flow cytometry.The expression of type Ⅱ collagen and SOX9 was detected by immunofluorescence staining.The expression of apoptosis-related proteins and Wnt/β-catenin pathway proteins was detected by western blot assay. RESULTS AND CONCLUSION:The cells extracted in vitro were cultured and stained,and were clearly identified as chondrocytes.Complanatoside A had no obvious cytotoxicity to chondrocytes in the concentration range of 0-80 μmol/L,and significantly improved the chondrocyte viability in the concentration range of 2.5-10 μmol/L,especially when the concentration was 5 μmol/L.The apoptotic rate of chondrocytes was higher in the sodium nitroprusside-induced group than the blank control group,while the apoptotic rate was lower in the sodium nitroprusside+Complanatoside A group than the sodium nitroprusside-induced group.The fluorescence intensity of type Ⅱ collagen and SOX9 in chondrocytes was weaker in the sodium nitroprusside-induced group than the blank control group,while the fluorescence intensity of type Ⅱ collagen and SOX9 in the sodium nitroprusside+Complanatoside A group was higher than that of the sodium nitroprusside-induced group.In the sodium nitroprusside-induced group,the protein expression of Bax,Caspase-3,matrix metalloproteinase 13,Wnt3a,Wnt5a and β-catenin was higher than that of the blank control group,while the protein expression of Bcl-2 was lower than that of the blank control group.In the sodium nitroprusside+Complanatoside A group,except for the protein expression of Bcl-2 which was higher than that of the sodium nitroprusside-induced group,the expression of the other aforementioned proteins was lower than that of the sodium nitroprusside-induced group.To conclude,Complanatoside A has a certain inhibitory effect on chondrocyte apoptosis,which could regulate apoptosis-related proteins and promote the expression of chondrocyte regulatory factors,and presumably might play a role through inhibiting the Wnt/β-catenin signaling pathway.
2.Screening of ferroptosis genes related to the prognosis of cervical cancer and construction of a prognostic model
Yue CHEN ; Wenxin CHEN ; Yi JIANG ; Dong ZHANG ; Boqun XU
Chinese Journal of Clinical Medicine 2025;32(2):259-267
Objective To screen ferroptosis genes related to the prognosis of cervical cancer and to construct a prognosis model. Methods Ferroptosis genes were obtained from FerrDb database, and cervical cancer related data were obtained from The Genome-Wide Association Study Catalog database and The Cancer Genome Atlas database. Transcriptome-Wide Association Study, colocalization analysis and differential expression analysis were conducted to screen out candidate ferroptosis genes; Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were conducted on candidate genes. Univariate Cox regression analysis was used to further screen out genes related to the prognosis of cervical cancer. Kaplan-Meier method was used to analyze the relationship between genes and the overall survival of patients. The expression levels of genes in pan-cancer were analyzed through the TIMER database. Two prognostic models were conducted, Model 1 included age and tumor stage, while Model 2 incorporated age, tumor stage, and prognostic genes. The predictive capabilities of the two models were compared. Results A total of 91 candidate genes related to ferroptosis were obtained. Univariate Cox regression analysis showed that 15 genes were associated with the prognosis of cervical cancer. CA9, SCD, TFRC, QSOX1 and CDO1 were risk factors affecting the prognosis of cervical cancer patients (P<0.05), while PTPN6, ALOXE3, HELLS, IFNG, MIOX, ALOX12B, DUOX1, ALOX15, AQP3 and IDO1 were protective factors (P<0.05). The mRNA expression levels of the 15 genes showed significant upregulation or downregulation in at least 7 types of cancers, among which TFRC was associated with the largest number of cancer types. Kaplan-Meier analysis showed that HELLS, DUOX1 and ALOXE3 were associated with poor prognosis in cervical cancer. The AUC of the model 1 for predicting 1-year and 3-year overall survival rates of cervical cancer patients was 0.455 and 0.478, and the AUC of Model 2 was 0.854 and 0.595. Model 2 (C-index = 0.727) had better predictive ability than Model 1 (C-index = 0.502). Conclusion The prognostic model composed of 15 prognostic-related genes selected based on bioinformatics has better predictive performance for the survival outcomes of cervical cancer patients, providing important reference value for the prognostic assessment of cervical cancer patients.
3.Novel outpatient infusion model of blinatumomab: case studies of two patients
Guijun LI ; Xuemei JIANG ; Xin WANG ; Qiuxia XU ; Jianhui LI ; Susi DAI ; Ying HE ; Hai YI ; Dan CHEN
Chinese Journal of Blood Transfusion 2025;38(4):557-561
[Objective] To evaluate the feasibility of a novel outpatient infusion model for blinatumomab in two acute lymphoblastic leukemia (ALL) patients, aiming to address challenges of poor treatment tolerance, high healthcare costs, and compromised quality of life, thereby providing clinical insights for broader adoption of this approach. [Methods] Two post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients undergoing blinatumomab maintenance therapy were selected to evaluate the efficacy of the outpatient infusion model. Patient selection criteria, nursing protocols, standardized workflows, and advancements in infusion practices were systematically analyzed combined with a review of global developments in this field. [Results] Both patients completed outpatient blinatumomab infusion without severe adverse events, demonstrating preliminary feasibility and safety of this model. The novel approach enhanced treatment convenience, reduced hospitalization costs, and improved quality of life. [Conclusion] Despite the limited sample size, this pilot study highlights the potential of outpatient blinatumomab administration as a viable alternative to traditional inpatient regimens.
4.Influencing factors, clinical manifestations and preventive strategies of hypercoagulable state after kidney transplantation
Rentian CHEN ; Zehua YUAN ; Hongtao JIANG ; Tao LI ; Meng YANG ; Liang XU ; Yi WANG
Organ Transplantation 2025;16(4):640-647
Hypercoagulable state (HCS) after kidney transplantation is one of the common and serious complications in kidney transplant recipients, which has attracted increasing attention in recent years. HCS refers to the abnormal and excessive activation of blood coagulation function, leading to the increased risk of thrombosis. After kidney transplantation, the combined effects of hemodynamic changes, surgical trauma and severe rejection increase the incidence of HCS, not only raising the risk of thrombosis but also potentially causing graft failure and affecting the postoperative survival rate of patients. This article reviews the influencing factors, clinical manifestations, diagnostic methods and preventive strategies of HCS after kidney transplantation, aiming to provide a theoretical basis for optimizing perioperative management and improving the prognosis of patients.
5.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
6.Transzonal Projections and Follicular Development Abnormalities in Polycystic Ovary Syndrome
Di CHENG ; Yu-Hua CHEN ; Xia-Ping JIANG ; Lan-Yu LI ; Yi TAN ; Ming LI ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2025;52(10):2499-2511
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting a substantial proportion of women of reproductive age. It is frequently associated with ovulatory dysfunction, infertility, and an increased risk of chronic metabolic diseases. A hallmark pathological feature of PCOS is the arrest of follicular development, closely linked to impaired intercellular communication between the oocyte and surrounding granulosa cells. Transzonal projections (TZPs) are specialized cytoplasmic extensions derived from granulosa cells that penetrate the zona pellucida to establish direct contact with the oocyte. These structures serve as essential conduits for the transfer of metabolites, signaling molecules (e.g., cAMP, cGMP), and regulatory factors (e.g., microRNAs, growth differentiation factors), thereby maintaining meiotic arrest, facilitating metabolic cooperation, and supporting gene expression regulation in the oocyte. The proper formation and maintenance of TZPs depend on the cytoskeletal integrity of granulosa cells and the regulated expression of key connexins, particularly CX37 and CX43. Recent studies have revealed that in PCOS, TZPs exhibit significant structural and functional abnormalities. Contributing factors—such as hyperandrogenism, insulin resistance, oxidative stress, chronic inflammation, and dysregulation of critical signaling pathways (including PI3K/Akt, Wnt/β‑catenin, and MAPK/ERK)—collectively impair TZP integrity and reduce their formation. This disruption in granulosa-oocyte communication compromises oocyte quality and contributes to follicular arrest and anovulation. This review provides a comprehensive overview of TZP biology, including their formation mechanisms, molecular composition, and stage-specific dynamics during folliculogenesis. We highlight the pathological alterations in TZPs observed in PCOS and elucidate how endocrine and metabolic disturbances—particularly androgen excess and hyperinsulinemia—downregulate CX43 expression and impair gap junction function, thereby exacerbating ovarian microenvironmental dysfunction. Furthermore, we explore emerging therapeutic strategies aimed at preserving or restoring TZP integrity. Anti-androgen therapies (e.g., spironolactone, flutamide), insulin sensitizers (e.g., metformin), and GLP-1 receptor agonists (e.g., liraglutide) have shown potential in modulating connexin expression and enhancing granulosa-oocyte communication. In addition, agents such as melatonin, AMPK activators, and GDF9/BMP15 analogs may promote TZP formation and improve oocyte competence. Advanced technologies, including ovarian organoid models and CRISPR-based gene editing, offer promising platforms for studying TZP regulation and developing targeted interventions. In summary, TZPs are indispensable for maintaining follicular homeostasis, and their disruption plays a pivotal role in the pathogenesis of PCOS-related folliculogenesis failure. Targeting TZP integrity represents a promising therapeutic avenue in PCOS management and warrants further mechanistic and translational investigation.
7.Two cases of urinary retention in patients with Alzheimer's disease with agitation treated by acupuncture.
Guanhua ZONG ; Ran LI ; Yuhang JIANG ; Zehao CHEN ; Shanshan YAN ; Zongxi YI ; Xinyu REN ; Baohui JIA
Chinese Acupuncture & Moxibustion 2025;45(12):1822-1824
This article reports 2 cases of urinary retention in Alzheimer's disease with agitation treated by acupuncture. Based on patients' clinical symptoms, the etiology and pathogenesis were determined, and acupuncture was applied to Baihui (GV20), Sishencong (EX-HN1), Shenting (GV24), and bilateral Ciliao (BL32), Zhongliao (BL33), Fengchi (GB20), Taiyang (EX-HN5), etc. to regulate the mind and promote water metabolism. The positive and negative electrodes of the SDZ-Ⅴ type electroacupuncture device were attached to ipsilateral Ciliao (BL32), Zhongliao (BL33) respectively, with continuous wave, at the frequency of 15 Hz, and the current of 3 to 10 mA, depending on patients' tolerance. The needles were retained for 20 min. The treatment was delivered once every other day, 3 interventions a week and 12 interventions as 1 course. Both patients reported the micturition desire after 1 intervention with acupuncture and the catheter was removed on the same day. The urination was ameliorated without dysuresia after 1-2 courses of treatment, and the agitated behavior was alleviated. It can be the reference for the clinical treatment of urinary retention in patients with Alzheimer's disease with agitation.
Humans
;
Alzheimer Disease/psychology*
;
Acupuncture Therapy
;
Urinary Retention/etiology*
;
Male
;
Female
;
Aged
;
Acupuncture Points
;
Psychomotor Agitation/complications*
8.Research progress in mechanisms of traditional Chinese medicine polysaccharides in prevention and treatment of alcoholic liver disease.
Yu-Fan CHEN ; He JIANG ; Qing MA ; Qi-Han LUO ; Shuo HUANG ; Jiang QIU ; Fu-Zhe CHEN ; Zi-Yi SHAN ; Ping QIU
China Journal of Chinese Materia Medica 2025;50(2):356-362
Alcoholic liver disease(ALD), a major cause of chronic liver disease worldwide, poses a serious threat to human health. Despite the availability of various drugs for treating ALD, their efficacy is often uncertain, necessitating the search for new therapeutic approaches. Traditional Chinese medicine polysaccharides have garnered increasing attention in recent years due to their versatility, high efficiency, and low side effects, and they have demonstrated significant potential in preventing and treating ALD. Emerging studies have suggested that these polysaccharides exert their therapeutic effects through multiple mechanisms, including the inhibition of oxidative stress and the regulation of lipid metabolism, gut microbiota, and programmed cell death. This review summarizes the recent research progress in the pharmacological effects and regulatory mechanisms of traditional Chinese medicine polysaccharides in treating ALD, aiming to provide a scientific basis and theoretical support for their application in the prevention and treatment of ALD.
Humans
;
Liver Diseases, Alcoholic/metabolism*
;
Polysaccharides/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Oxidative Stress/drug effects*
;
Medicine, Chinese Traditional
;
Gastrointestinal Microbiome/drug effects*
;
Lipid Metabolism/drug effects*
9.Traditional Chinese medicine dry powder inhalers: research status and development ideas and methods.
Yu-Wen MA ; Yi-Chen ZENG ; Hao-Ran WANG ; Guang-Fu LIU ; Jun JIANG ; Yu-Song ZENG ; Bai-Xiu ZHAO ; Jin FANG
China Journal of Chinese Materia Medica 2025;50(3):620-631
As an innovative dosage form, traditional Chinese medicine(TCM) dry powder inhalers have emerged as a focal point in the research and development of new preparations due to its high efficiency, safety, and bioavailability. This paper systematically reviewed the relevant literature and patents associated with TCM dry powder inhalers to analyze the origins and the current research and development status. Furthermore, this paper probed into the research and development ideas of TCM dry powder inhalers regarding clinical positioning, prescription screening, and druggability. Additionally, the paper thoroughly analyzed the technical barriers in druggability studies and elaborated on corresponding research techniques and coping measures. Furthermore, it emphasized the need for improved regulations and policies governing TCM dry powder inhalers, advocated for strengthened oversight, and called for the establishment of a scientific quality evaluation system. Measures such as promoting production-education-research collaboration, enhancing personnel training, and fostering international exchanges were proposed to provide a scientific and systematic reference for the future research, development, and application of TCM dry powder inhalers, thereby facilitating the rapid modernization of TCM.
Humans
;
Dry Powder Inhalers/trends*
;
Drugs, Chinese Herbal/chemistry*
;
Medicine, Chinese Traditional/instrumentation*
;
Administration, Inhalation
10.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*

Result Analysis
Print
Save
E-mail