1.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
2.A dual-targeting peptide-drug conjugate based on CXCR4 and FOLR1 inhibits triple-negative breast cancer.
Kun WANG ; Cong WANG ; Hange YANG ; Gong CHEN ; Ke WANG ; Peihong JI ; Xudong SUN ; Xuegong FAN ; Jie MA ; Zhencun CUI ; Xingkai WANG ; Hao TIAN ; Dengfu WU ; Lu WANG ; Zhimin WANG ; Jiangyan LIU ; Juan YI ; Kuan HU ; Hailong ZHANG ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):4995-5009
Triple-negative breast cancer is therapeutically challenging due to the low expression of tumor markers and 'cold' tumor immunosuppressive microenvironment. Here, we present a dual-targeting peptide-drug conjugate (PDC) for tumor inhibition. Our PDC efficiently and selectively delivers cytotoxic Monomethyl Auristatin E (MMAE) into tumor cells via C-X-C chemokine receptor type 4 (CXCR4) and folate receptor 1 (FOLR1) for synergistic inhibition of growth and metastasis. Our results show that the dual-targeting PDC has potent antitumor activity in cultured human cells and several murine transplanted tumor models without apparent toxicity. The combination of dual-targeting PDC and radiotherapy modulates the tumor immunosuppressive microenvironment by increasing CD8+ T cell infiltration and attenuating the proportion of myeloid-derived suppressor and regulatory T cells. Therefore, our dual-targeting PDC represents a promising new strategy for cancer therapy that rebalances the immune system and promotes tumor regression.
3.CRTAC1 derived from senescent FLSs induces chondrocyte mitochondrial dysfunction via modulating NRF2/SIRT3 axis in osteoarthritis progression.
Xiang CHEN ; Wang GONG ; Pan ZHANG ; Chengzhi WANG ; Bin LIU ; Xiaoyan SHAO ; Yi HE ; Na LIU ; Jiaquan LIN ; Jianghui QIN ; Qing JIANG ; Baosheng GUO
Acta Pharmaceutica Sinica B 2025;15(11):5803-5816
Osteoarthritis (OA), the most prevalent joint disease of late life, is closely linked to cellular senescence. Previously, we found that the senescence of fibroblast-like synoviocytes (FLS) played an essential role in the degradation of cartilage. In this work, single-cell sequencing data further demonstrated that cartilage acidic protein 1 (CRTAC1) is a critical secreted factor of senescent FLS, which suppresses mitophagy and induces mitochondrial dysfunction by regulating SIRT3 expression. In vivo, deletion of SIRT3 in chondrocytes accelerated cartilage degradation and aggravated the progression of OA. Oppositely, intra-articular injection of adeno-associated virus expressing SIRT3 effectively alleviated OA progression in mice. Mechanistically, we demonstrated that elevated CRTAC1 could bind with NRF2 in chondrocytes, which subsequently suppresses the transcription of SIRT3 in vitro. In addition, SIRT3 reduction could promote the acetylation of FOXO3a and result in mitochondrial dysfunction, which finally contributes to the degradation of chondrocytes. To conclude, this work revealed the critical role and underlying mechanism of senescent FLSs-derived CRTAC1 in OA progression, which provided a potential strategy for the OA therapy.
4.Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.
Yiwei GONG ; Zheng ZHANG ; Yuanzhi YANG ; Shuo ZHANG ; Ruifeng ZHENG ; Xin LI ; Xiaoyun QIU ; Yang ZHENG ; Shuang WANG ; Wenyu LIU ; Fan FEI ; Heming CHENG ; Yi WANG ; Dong ZHOU ; Kejie HUANG ; Zhong CHEN ; Cenglin XU
Neuroscience Bulletin 2025;41(5):790-804
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis. However, it still lacks effective predictors and approaches. Here, a classical model of pharmacoresistant temporal lobe epilepsy (TLE) was established to screen pharmacoresistant and pharmaco-responsive individuals by applying phenytoin to amygdaloid-kindled rats. Ictal electroencephalograms (EEGs) recorded before phenytoin treatment were analyzed. Based on ictal EEGs from pharmacoresistant and pharmaco-responsive rats, a convolutional neural network predictive model was constructed to predict pharmacoresistance, and achieved 78% prediction accuracy. We further found the ictal EEGs from pharmacoresistant rats have a lower gamma-band power, which was verified in seizure EEGs from pharmacoresistant TLE patients. Prospectively, therapies targeting the subiculum in those predicted as "pharmacoresistant" individual rats significantly reduced the subsequent occurrence of pharmacoresistance. These results demonstrate a new methodology to predict whether TLE individuals become resistant to ASMs in a classic pharmacoresistant TLE model. This may be of translational importance for the precise management of pharmacoresistant TLE.
Epilepsy, Temporal Lobe/diagnosis*
;
Animals
;
Drug Resistant Epilepsy/drug therapy*
;
Electroencephalography/methods*
;
Rats
;
Anticonvulsants/pharmacology*
;
Neural Networks, Computer
;
Male
;
Humans
;
Phenytoin/pharmacology*
;
Adult
;
Disease Models, Animal
;
Female
;
Rats, Sprague-Dawley
;
Young Adult
;
Convolutional Neural Networks
5.Suppressing DBNDD2 promotes neuron growth and axon regeneration in adult mammals.
Lan ZHANG ; Yucong WU ; Zhuheng ZHONG ; Tianyun CHEN ; Yuyue QIAN ; Sheng YI ; Leilei GONG
Frontiers of Medicine 2025;19(4):636-652
Effective axon regeneration is essential for the successful restoration of nerve functions in patients suffering from axon injury-associated neurological diseases. Certain self-regeneration occurs in injured peripheral axonal branches of dorsal root ganglion (DRG) neurons but does not occur in their central axonal branches. By performing rat sciatic nerve or dorsal root axotomy, we determined the expression of the dysbindin domain containing 2 (DBNDD2) in the DRGs after the regenerative peripheral axon injury or the non-regenerative central axon injury, respectively, and found that DBNDD2 is down-regulated in the DRGs after peripheral axon injury but up-regulated after central axon injury. Furthermore, we found that DBNDD2 expression differs in neonatal and adult rat DRGs and is gradually increased during development. Functional analysis through DBNDD2 knockdown revealed that silencing DBNDD2 promotes the outgrowth of neurites in both neonatal and adult rat DRG neurons and stimulates robust axon regeneration in adult rats after sciatic nerve crush injury. Bioinformatic analysis data showed that transcription factor estrogen receptor 1 (ESR1) interacts with DBNDD2, exhibits a similar expression trend as DBNDD2 after axon injury, and may targets DBDNN2. These studies indicate that reduced level of DBNDD2 after peripheral axon injury and low abundance of DBNDD2 in neonates contribute to axon regeneration and thus suggest the manipulation of DBNDD2 expression as a promising therapeutic approach for improving recovery after axon damage.
Animals
;
Ganglia, Spinal/metabolism*
;
Nerve Regeneration/genetics*
;
Rats
;
Axons/metabolism*
;
Sciatic Nerve/injuries*
;
Rats, Sprague-Dawley
;
Male
6.The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells
Zhuo CHEN ; Meng-Wei YAO ; Xiang AO ; Qing-Jia GONG ; Yi YANG ; Jin-Xia LIU ; Qi-Zhou LIAN ; Xiang XU ; Ling-Jing ZUO
Chinese Journal of Traumatology 2024;27(1):1-10
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
7.Expert consensus on cryoablation therapy of oral mucosal melanoma
Guoxin REN ; Moyi SUN ; Zhangui TANG ; Longjiang LI ; Jian MENG ; Zhijun SUN ; Shaoyan LIU ; Yue HE ; Wei SHANG ; Gang LI ; Jie ZHNAG ; Heming WU ; Yi LI ; Shaohui HUANG ; Shizhou ZHANG ; Zhongcheng GONG ; Jun WANG ; Anxun WANG ; Zhiyong LI ; Zhiquan HUNAG ; Tong SU ; Jichen LI ; Kai YANG ; Weizhong LI ; Weihong XIE ; Qing XI ; Ke ZHAO ; Yunze XUAN ; Li HUANG ; Chuanzheng SUN ; Bing HAN ; Yanping CHEN ; Wenge CHEN ; Yunteng WU ; Dongliang WEI ; Wei GUO
Journal of Practical Stomatology 2024;40(2):149-155
Cryoablation therapy with explicit anti-tumor mechanisms and histopathological manifestations has a long history.A large number of clinical practice has shown that cryoablation therapy is safe and effective,making it an ideal tumor treatment method in theory.Previously,its efficacy and clinical application were constrained by the limitations of refrigerants and refrigeration equipment.With the development of the new generation of cryoablation equipment represented by argon helium knives,significant progress has been made in refrigeration efficien-cy,ablation range,and precise temperature measurement,greatly promoting the progression of tumor cryoablation technology.This consensus systematically summarizes the mechanism of cryoablation technology,indications for oral mucosal melanoma(OMM)cryotherapy,clinical treatment process,adverse reactions and management,cryotherapy combination therapy,etc.,aiming to provide reference for carrying out the standardized cryoablation therapy of OMM.
8.Application of transfrontal neuroendoscopic surgery in the treatment of chronic subdural hematoma
Yi GONG ; Wenkui YANG ; Pei CHEN ; Dongyu ZHAI
China Journal of Endoscopy 2024;30(1):1-6
Objective To evaluate the efficacy of transfrontal neuroendoscopic surgery in the treatment of chronic subdural hematoma.Methods Analysis of clinical data of 80 cases of chronic subdural hematoma.According to the surgical method,40 cases were divided into traditional external drainage of parietaltuber,40 cases were divided into transfrontal neuroendoscopic small bone window hematoma removal.The treatment efficiency,hematoma recurrence rate,operation time and intraoperative blood loss were compared between the two groups.Results Treatment efficiency of neuroendoscopic group was 95.0%,significantly higher than drainage group 75.0%,hematoma recurrence rate one month after surgery of neuroendoscopic group was 5.0%,significantly lower than that in drainage group 25.0%,operation time of neuroendoscopic group was(54.1±7.5)min,longer than that of drainage group(40.7±9.4)min,the differences were statistically significant(P<0.05).The intraoperative blood loss of neuroendoscopic group was(30.1±4.5)mL,compared with(27.1±6.4)mL in the drainage group,the difference was not statistically significant(P>0.05).Conclusion Transfrontal neuroendoscopic surgery can significantly improve the efficacy of chronic subdural hematoma,and hematoma recurrence rate is extremely low.It is worthy of clinical application.
9.Knockout SQLE in melanoma cells potentiates anti-tumor immunity via improving CD8+T cell infiltration in tumor microenvironment
Yao DING ; Wen LIU ; Yiran LIAO ; Shun LEI ; Yan ZHANG ; Yezi CHEN ; Yi GONG ; Qizhao HUANG
Acta Universitatis Medicinalis Anhui 2024;59(8):1315-1322
Objective To investigate the role of squalene epoxidase(SQLE)knockout in anti-tumor effect vial im-proving CD8+T cell infiltration in melanoma tumor microenvironment.Methods Both immunodeficient and immu-nocompetent mice were inoculated with SQLE knockout B16F10 cells to determine the cell-autonomous and non-au-tonomous regulation of malignancy.Antibody blockade,Luminex multiplex assays,and flow cytometry were em-ployed to explore the impact of SQLE gene knockout on the secretion of cytokines/chemokines and immune cell in-filtration.Bioinformatics analysis was conducted to validate the correlation between SQLE expression and immune infiltration as well as clinical prognosis in melanoma patients.Results Compared with immunodeficient mice,SQLE knockout significantly inhibited melanoma proliferation in immunocompetent mice and prolonged their surviv-al.SQLE knockout induced the secretion of cytokines and chemokines from tumor cells,improved CD8+T cell in-filtration in the tumor microenvironment,thereby potentiating anti-tumor immunity.Bioinformatics analysis sugges-ted a significant correlation between SQLE and its corresponding immune infiltration markers with the prognosis of melanoma patients.Conclusion SQLE regulates anti-tumor immunity by controlling cytokines and chemokines re-leasing in tumor microenvironment,thus holding promise as a novel tumor immunotherapy target and efficacy predic-tion molecular indicator.
10.Preparation and in vivo Distribution of Essential Oil from Alpinia zerumbet Fructus Encapsulated Nanoemulsions
Jinzhuan XU ; Lili ZHANG ; Zhengli ZHOU ; Shan XU ; Xiang ZHOU ; Lei HUANG ; Zipeng GONG ; Yi CHEN ; Xiangchun SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):126-133
ObjectiveTo prepare oral nanoemulsions encapsulating essential oil from Alpinia zerumbet fructus(EOFAZ) and to investigate its pro-absorption effect in vitro and distribution in vivo. MethodThe proteoglycan conjugate polysaccharides of vinegar-processed Bupleuri Radix-bovine serum albumin(VBCP-BSA) was prepared by Maillard reaction of VBCP and BSA. Taking VBCP-BSA as emulsifier, vitamin B12(VB12) as absorption enhancer, and medium chain triglycerides mixed with EOFAZ as oil phase, the nanoemulsions loaded with EOFAZ was prepared by high energy emulsification method. The particle size, particle size distribution, surface Zeta potential, EOFAZ content and appearance and morphology of the nanoemulsions were characterized, and fluorescein tracer method was used to investigate the absorption effect of fluorescein-labeled EOFAZ nanoemulsions in vitro and their distribution in vivo. ResultVBCP-BSA was formed by Maillard reaction for 48 h with high grafting rate. Using VBCP-BSA as emulsifier, the homogeneous pink nanoemulsions was prepared and denoted as EOFAZ@VBCP-BSA/VB12. The particle size of the nanoemulsions was less than 100 nm and the particle size distribution was uniform. The surface of the nanoemulsions was a weak negative charge, and the shape was spherical. The encapsulation rate of the nanoemulsions for EOFAZ was greater than 80%, which had a good absorption effect in vitro and could enhance liver accumulation after oral administration. ConclusionThe designed proteoglycan nanoemulsions can effectively load EOFAZ, promote oral absorption and enhance liver distribution, which can provide experimental basis for the development of oral EOFAZ liver protection preparations.


Result Analysis
Print
Save
E-mail