1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
3.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
4.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
5.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
6.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
7.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
8.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
9.Agreement and Reliability between Clinically Available Software Programs in Measuring Volumes and Normative Percentiles of Segmented Brain Regions
Huijin SONG ; Seun Ah LEE ; Sang Won JO ; Suk-Ki CHANG ; Yunji LIM ; Yeong Seo YOO ; Jae Ho KIM ; Seung Hong CHOI ; Chul-Ho SOHN
Korean Journal of Radiology 2023;24(9):926-927
10.Effect of an Individually Tailored Program Based on Self-Measurement of Blood Glucose on Health Behavior and HbA1c in Diabetes and Pre-diabetes Patients
Yoon-kyung KIM ; Bo-Ra KIM ; Eun-Suk YOO ; Seo-Yeong YUN ; Mi-Jeong JEONG ; Ji-Hye CHOI ; Jae-Soon CHOI ; Hyun-Jin SUNG ; Young-Suk KANG ; Min-Sook LEE ; Tae-Yoon HWANG
Journal of Agricultural Medicine & Community Health 2022;47(2):67-77
Objective:
This study was to evaluate the effectiveness of an individually tailored program based on self-measurement of blood glucose on health behavior and HbA1c in diabetes and pre-diabetes patients.
Methods:
The program consisted of seven sessions for 12 weeks which were carried out every two weeks. Almost all sessions were progressed on untact method except for the first and last session. The 71 subjects were assessed for their knowledge of diabetes, health behavior, the experience of self-measurement of blood glucose, body mass Index (BMI) and hemoglobin A1c (HbA1c) at before and after the program. They were also evaluated on their degree of utilization of blood glucose measurements after the program.
Results:
Each mean score on their knowledge of diabetes, health behavior and the experience of self-measurement of blood glucose was significantly increased from 14.77, 25.50, and 2.70 to 15.41, 28.40, and 4.81, respectively. Each mean score on both BMI and HbA1c (n=53) was significantly decreased from 24.47kg/m2 and 7.27% to 24.01kg/m2 and 6.67%, respectively. The post-HbA1c had a significant negative correlation(r=-0.415) with the degree of utilization of blood glucose measurements. The degree of utilization of blood glucose measurements had a significant positive correlation(r=0.581) with post-health behavior.
Conclusions
The program shows effectiveness in improving HbA1c in Type 2 diabetes and pre-diabetes patients. The post-HbA1c might be related to the degree of utilization of blood glucose measurements which might be related to the health behavior.

Result Analysis
Print
Save
E-mail