1.Therapeutic Mechanisms of Xiebai San on Lung Heat-induced Cough and Asthma via Modulating Lung-Brain Axis Metabolism Based on Spatial Metabolomics
Yue XU ; Fuzhi MA ; Yeerjiang AYIMAN ; Lin ZHU ; Qingce ZANG ; Zhijie MA
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):41-48
ObjectiveBased on whole-animal mass spectrometry imaging technology, spatial metabolomics was used to characterize in situ the metabolic alteration patterns in the lungs and brain of a rat model of lung heat-induced cough and asthma, as well as after treatment with Xiebai San. MethodsNine Sprague-Dawley (SD) rats were randomly divided into a blank group (physiological saline), a model group (physiological saline), and a Xiebai San group (9 g·kg-1), with three rats in each group. The model group and the Xiebai San group were both induced using lipopolysaccharide-ovalbumin (LPS-OVA) to establish an asthma rat model. After treatment with Xiebai San, the animals were euthanized on day 21 and rapidly frozen in liquid nitrogen to preserve morphology. Whole-animal tissue sections were prepared using a cryomicrotome, and imaging was performed using the Air-flow-assisted Desorption Electrospray Ionization Mass Spectrometry Imaging (AFADESI-MSI) platform. Based on the corresponding optical images, ion data of metabolites from the lung and brain tissues of each group were extracted. Differential metabolites were analyzed using SIMCA and GraphPad Prism 9.0 software. Metabolites were identified using the HMDB (
2.Therapeutic Mechanisms of Xiebai San on Lung Heat-induced Cough and Asthma via Modulating Lung-Brain Axis Metabolism Based on Spatial Metabolomics
Yue XU ; Fuzhi MA ; Yeerjiang AYIMAN ; Lin ZHU ; Qingce ZANG ; Zhijie MA
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):41-48
ObjectiveBased on whole-animal mass spectrometry imaging technology, spatial metabolomics was used to characterize in situ the metabolic alteration patterns in the lungs and brain of a rat model of lung heat-induced cough and asthma, as well as after treatment with Xiebai San. MethodsNine Sprague-Dawley (SD) rats were randomly divided into a blank group (physiological saline), a model group (physiological saline), and a Xiebai San group (9 g·kg-1), with three rats in each group. The model group and the Xiebai San group were both induced using lipopolysaccharide-ovalbumin (LPS-OVA) to establish an asthma rat model. After treatment with Xiebai San, the animals were euthanized on day 21 and rapidly frozen in liquid nitrogen to preserve morphology. Whole-animal tissue sections were prepared using a cryomicrotome, and imaging was performed using the Air-flow-assisted Desorption Electrospray Ionization Mass Spectrometry Imaging (AFADESI-MSI) platform. Based on the corresponding optical images, ion data of metabolites from the lung and brain tissues of each group were extracted. Differential metabolites were analyzed using SIMCA and GraphPad Prism 9.0 software. Metabolites were identified using the HMDB (

Result Analysis
Print
Save
E-mail