1.Advances in abscisic acid biosynthesis.
Kexin LI ; Ying WANG ; Mingdong YAO ; Wenhai XIAO
Chinese Journal of Biotechnology 2023;39(6):2190-2203
Abscisic acid, a plant hormone that inhibits growth, is a key factor in balancing plant endogenous hormones and regulating growth and metabolism. Abscisic acid can improve the drought resistance and salt tolerance of crops, reduce fruit browning, reduce the incidence rate of malaria and stimulate insulin secretion, so it has a broad application potential in agriculture and medicine. Compared with traditional plant extraction and chemical synthesis, abscisic acid synthesis by microorganisms is an economic and sustainable route. At present, a lot of progress has been made in the synthesis of abscisic acid by natural microorganisms such as Botrytis cinerea and Cercospora rosea, while the research on the synthesis of abscisic acid by engineered microorganisms is rarely reported. Saccharomyces cerevisiae, Yarrowia lipolytica and Escherichia coli are common hosts for heterologous synthesis of natural products due to their advantages of clear genetic background, easy operation and friendliness for industrial production. Therefore, the heterologous synthesis of abscisic acid by microorganisms is a more promising production method. The author reviews the research on the heterologous synthesis of abscisic acid by microorganisms from five aspects: selection of chassis cells, screening and expression enhancement of key enzymes, regulation of cofactors, enhancement of precursor supply and promotion of abscisic acid efflux. Finally, the future development direction of this field is prospected.
Abscisic Acid/metabolism*
;
Plant Growth Regulators/metabolism*
;
Plants/metabolism*
;
Yarrowia/metabolism*
2.Advances on the production of organic acids by yeast.
Ruiyuan ZHANG ; Yifan ZHU ; Duwen ZENG ; Shihao WEI ; Yachao FAN ; Sha LIAO ; Xinqing ZHAO ; Fengli ZHANG ; Lin ZHANG
Chinese Journal of Biotechnology 2023;39(6):2231-2247
Organic acids are organic compounds that can be synthesized using biological systems. They often contain one or more low molecular weight acidic groups, such as carboxyl group and sulphonic group. Organic acids are widely used in food, agriculture, medicine, bio-based materials industry and other fields. Yeast has unique advantages of biosafety, strong stress resistance, wide substrate spectrum, convenient genetic transformation, and mature large-scale culture technology. Therefore, it is appealing to produce organic acids by yeast. However, challenges such as low concentration, many by-products and low fermentation efficiency still exist. With the development of yeast metabolic engineering and synthetic biology technology, rapid progress has been made in this field recently. Here we summarize the progress of biosynthesis of 11 organic acids by yeast. These organic acids include bulk carboxylic acids and high-value organic acids that can be produced naturally or heterologously. Finally, future prospects in this field were proposed.
Saccharomyces cerevisiae/metabolism*
;
Organic Chemicals
;
Carboxylic Acids/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Acids
3.Biosynthesis of natural products by non-conventional yeasts.
Zhilan QIAN ; Lili SONG ; Qi LIU ; Xiulong GONG ; Yijia KANG ; Ziyu HE ; Haoyu LONG ; Menghao CAI
Chinese Journal of Biotechnology 2023;39(6):2284-2312
Non-conventional yeasts such as Yarrowia lipolytica, Pichia pastoris, Kluyveromyces marxianus, Rhodosporidium toruloides and Hansenula polymorpha have proven to be efficient cell factories in producing a variety of natural products due to their wide substrate utilization spectrum, strong tolerance to environmental stresses and other merits. With the development of synthetic biology and gene editing technology, metabolic engineering tools and strategies for non-conventional yeasts are expanding. This review introduces the physiological characteristics, tool development and current application of several representative non-conventional yeasts, and summarizes the metabolic engineering strategies commonly used in the improvement of natural products biosynthesis. We also discuss the strengths and weaknesses of non-conventional yeasts as natural products cell factories at current stage, and prospects future research and development trends.
Yeasts/genetics*
;
Yarrowia/metabolism*
;
Gene Editing
;
Metabolic Engineering
4.Advances in gene editing and natural product synthesis of Rhodotorula toruloides.
Qidou GAO ; Yaqi DONG ; Ying HUANG ; Yijuan LIU ; Xiaobing YANG
Chinese Journal of Biotechnology 2023;39(6):2313-2333
Rhodotorula toruloides is a non-conventional red yeast that can synthesize various carotenoids and lipids. It can utilize a variety of cost-effective raw materials, tolerate and assimilate toxic inhibitors in lignocellulosic hydrolysate. At present, it is widely investigated for the production of microbial lipids, terpenes, high-value enzymes, sugar alcohols and polyketides. Given its broad industrial application prospects, researchers have carried out multi-dimensional theoretical and technological exploration, including research on genomics, transcriptomics, proteomics and genetic operation platform. Here we review the recent progress in metabolic engineering and natural product synthesis of R. toruloides, and prospect the challenges and possible solutions in the construction of R. toruloides cell factory.
Gene Editing
;
Metabolic Engineering
;
Rhodotorula/metabolism*
;
Lipids
5.Advances in the production of chemicals by organelle compartmentalization in Saccharomyces cerevisiae.
Tao LUAN ; Mengqi YIN ; Ming WANG ; Xiulong KANG ; Jianzhi ZHAO ; Xiaoming BAO
Chinese Journal of Biotechnology 2023;39(6):2334-2358
As a generally-recognized-as-safe microorganism, Saccharomyces cerevisiae is a widely studied chassis cell for the production of high-value or bulk chemicals in the field of synthetic biology. In recent years, a large number of synthesis pathways of chemicals have been established and optimized in S. cerevisiae by various metabolic engineering strategies, and the production of some chemicals have shown the potential of commercialization. As a eukaryote, S. cerevisiae has a complete inner membrane system and complex organelle compartments, and these compartments generally have higher concentrations of the precursor substrates (such as acetyl-CoA in mitochondria), or have sufficient enzymes, cofactors and energy which are required for the synthesis of some chemicals. These features may provide a more suitable physical and chemical environment for the biosynthesis of the targeted chemicals. However, the structural features of different organelles hinder the synthesis of specific chemicals. In order to ameliorate the efficiency of product biosynthesis, researchers have carried out a number of targeted modifications to the organelles grounded on an in-depth analysis of the characteristics of different organelles and the suitability of the production of target chemicals biosynthesis pathway to the organelles. In this review, the reconstruction and optimization of the biosynthesis pathways for production of chemicals by organelle mitochondria, peroxisome, golgi apparatus, endoplasmic reticulum, lipid droplets and vacuole compartmentalization in S. cerevisiae are reviewed in-depth. Current difficulties, challenges and future perspectives are highlighted.
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
;
Golgi Apparatus/metabolism*
;
Metabolic Engineering
;
Vacuoles/metabolism*
6.Tools for large-scale genetic manipulation of yeast genome.
Jieyi LI ; Hanze TONG ; Yi WU
Chinese Journal of Biotechnology 2023;39(6):2465-2484
Large-scale genetic manipulation of the genome refers to the genetic modification of large fragments of DNA using knockout, integration and translocation. Compared to small-scale gene editing, large-scale genetic manipulation of the genome allows for the simultaneous modification of more genetic information, which is important for understanding the complex mechanisms such as multigene interactions. At the same time, large-scale genetic manipulation of the genome allows for larger-scale design and reconstruction of the genome, and even the creation of entirely new genomes, with great potential in reconstructing complex functions. Yeast is an important eukaryotic model organism that is widely used because of its safety and easiness of manipulation. This paper systematically summarizes the toolkit for large-scale genetic manipulation of the yeast genome, including recombinase-mediated large-scale manipulation, nuclease-mediated large-scale manipulation, de novo synthesis of large DNA fragments and other large-scale manipulation tools, and introduces their basic working principles and typical application cases. Finally, the challenges and developments in large-scale genetic manipulation are presented.
DNA
;
Gene Editing
;
Genetic Engineering
;
Saccharomyces cerevisiae/genetics*
;
Translocation, Genetic
7.Functional analysis on sucrose transporters in sweet potato.
Yiran LIU ; Zhengdan WU ; Weitai WU ; Chaobin YANG ; Cairui CHEN ; Kai ZHANG
Chinese Journal of Biotechnology 2023;39(7):2772-2793
Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.
Ipomoea batatas/metabolism*
;
Arabidopsis/metabolism*
;
Sucrose/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
DNA, Complementary
;
Phylogeny
;
Plants, Genetically Modified/genetics*
;
Membrane Transport Proteins/metabolism*
;
Starch/metabolism*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
8.Construction of cell factories for production of patchoulol in Saccharomyces cerevisiae.
Shuang GUO ; Dong WANG ; Ting-Ting YANG ; Wen-Hao LI ; Rong-Sheng LI ; Guo-Wei ZHANG ; Xue-Li ZHANG ; Zhu-Bo DAI
China Journal of Chinese Materia Medica 2023;48(9):2316-2324
Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.
Saccharomyces cerevisiae/metabolism*
;
Sesquiterpenes/metabolism*
;
Pogostemon
;
Oils, Volatile/metabolism*
10.Sterol transport proteins in yeast: a review.
Yu WANG ; Tao WU ; Xuqian FAN ; Haihua RUAN ; Feiyu FAN ; Xueli ZHANG
Chinese Journal of Biotechnology 2023;39(8):3204-3218
Sterols are a class of cyclopentano-perhydrophenanthrene derivatives widely present in living organisms. Sterols are important components of cell membranes. In addition, they also have important physiological and pharmacological activities. With the development of synthetic biology and metabolic engineering technology, yeast cells are increasingly used for the heterologous synthesis of sterols in recent years. Nevertheless, since sterols are hydrophobic macromolecules, they tend to accumulate in the membrane fraction of yeast cells and consequently trigger cytotoxicity, which hampers the further improvement of sterols yield. Therefore, revealing the mechanism of sterol transport in yeast, especially understanding the working principle of sterol transporters, is vital for designing strategies to relieve the toxicity of sterol accumulation and increasing sterol yield in yeast cell factories. In yeast, sterols are mainly transported through protein-mediated non-vesicular transport mechanisms. This review summarizes five types of sterol transport-related proteins that have been reported in yeast, namely OSBP/ORPs family proteins, LAM family proteins, ABC transport family proteins, CAP superfamily proteins, and NPC-like sterol transport proteins. These transporters play important roles in intracellular sterol gradient distribution and homeostasis maintenance. In addition, we also review the current status of practical applications of sterol transport proteins in yeast cell factories.
Saccharomyces cerevisiae/genetics*
;
Sterols
;
Phytosterols
;
Biological Transport
;
ATP-Binding Cassette Transporters/genetics*

Result Analysis
Print
Save
E-mail