1.High Expression of INF2 Predicts Poor Prognosis and Promotes Hepatocellular Carcinoma Progression
Hai-Biao WANG ; Man LIN ; Fu-Sang YE ; Jia-Xin SHI ; Hong LI ; Meng YE ; Jie WANG
Progress in Biochemistry and Biophysics 2025;52(1):194-208
ObjectiveINF2 is a member of the formins family. Abnormal expression and regulation of INF2 have been associated with the progression of various tumors, but the expression and role of INF2 in hepatocellular carcinoma (HCC) remain unclear. HCC is a highly lethal malignant tumor. Given the limitations of traditional treatments, this study explored the expression level, clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets. MethodsIn this study, we used public databases to analyze the expression of INF2 in pan-cancer and HCC, as well as the impact of INF2 expression levels on HCC prognosis. Quantitative real time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues. The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples. Subsequently, the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments. Finally, the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments. ResultsINF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival, liver cirrhosis and pathological differentiation of HCC patients. The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC. In vivo and in vitro HCC models, upregulated expression of INF2 triggers the proliferation and migration of the HCC cell, while knockdown of INF2 could counteract this effect. INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression, thus promoting tumor progression. ConclusionINF2 is highly expressed in HCC and is associated with poor prognosis. High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression, and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
2.Ancient Literature Analysis and Textual Research of Classic Formula Zhishi Shaoyaosan
Chenyu LI ; Cong OUYANG ; Rou ZENG ; Ziyan LIU ; Ye ZHANG ; Jie LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):234-243
Zhishi Shaoyaosan is the 34th prescription in the Catalogue of Ancient Classic Formulas (Second Batch) published by the National Administration of Traditional Chinese Medicine in 2023. It is widely used in clinical practice and has a definite curative effect. However, there is currently a lack of its ancient literature analysis and textual research, and there is no corresponding Chinese patent medicine preparation. By consulting and combing the relevant ancient books of traditional Chinese medicine, this paper analyzes and conducts textual research of the origin, composition, measurement, administration, and efficacy of Zhishi Shaoyaosan. The results show that Zhishi Shaoyaosan is derived from Essentials from the Golden Cabinet written by Zhang Zhongjing in the Eastern Han Dynasty. It is mainly recorded in the name of Zhishi Shaoyaosan in the literature of the past dynasties. The prescription is composed of Aurantii Fructus Immaturus and Paeoniae Radix Alba. The processing method is stir-frying Aurantii Fructus Immaturus to scorch and using raw Paeoniae Radix Alba. The dose of the prescription recorded in the ancient books is mainly an equal amount of Aurantii Fructus Immaturus and Paeoniae Radix Alba in one square-cun spoon, taken three times a day, which is converted into a modern dose of 1.5 g each time (0.75 g Aurantii Fructus Immaturus and 0.75 g Paeoniae Radix Alba each time). The components of the prescription are ground into powder and taken with barley porridge, three times a day. The efficacy is to break stagnated Qi, harmonize blood, and relieve restlessness and pain. It is mainly used to treat postpartum abdominal pain, acute pelvic inflammatory disease, acute cholecystitis and intestinal diseases, stroke sequelae, and other diseases. This study combs and analyzes the ancient literature recording Zhishi Shaoyaosan and clarifies the key information of the prescription, which provides a basis for promoting the research and development of its patent medicine.
3.Analysis on Acupuncture in the Treatment of Post-stroke Dysphagia Based on the Theory of "Latent Pathogen in Cerebral Collaterals"
Hongtao LI ; Yaqi HUANG ; Lulu YAO ; Bing GAO ; Yu YE ; Nenggui XU ; Lin WANG
Journal of Traditional Chinese Medicine 2025;66(9):901-905
Dysphagia is a common complication of stroke. Combining the principles of traditional Chinese medicine with modern research findings, it is proposed that "latent pathogen in the cerebral collaterals" constitutes the core pathogenesis of post-stroke dysphagia (PSD). In clinical practice, treatment is tailored according to the location of PSD. During the oral stage, when the pathogen invades the face and mouth, resulting in excessive salivation, acupoints are primarily selected from the foot shaoyin (少阴) kidney channel, in combination with ren mai (任脉) , du mai (督脉), chong mai (冲脉) and the spleen channel, to replenish essence and fill the marrow, dispel dampness and unblock the channels. In the pharyngeal stage, as the pathogen obstructs the throat, disrupting normal swallowing, the therapy emphasizes dredging the shaoyang (少阳) channel and warming and tonifying the jueyin (厥阴) channel, by taking acupoints mainly from the hand and foot shaoyang channels, along with the jueyin channels, so as to soothe the liver and promote bile secretion, regulate and harmonize qi and blood. During the esophageal stage, where the pathogen damages the esophagus, impeding food passage, the treatment emphasizes activating the yangming (阳明) channels and regulating taiyin (太阴) channels; acupoints are mainly selected from the foot yangming stomach channel, along with the taiyin channels, aiming to warm yang, unblock the channels and dispel stasis.
4.Traditional Chinese Medicine in Regulating Crown-like Structures for Treatment of Obese PCOS: A Review
Wenyan TU ; Liqun YE ; Muyang LI ; Yihong YIN ; Ying SHEN ; Qidi LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):296-307
Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder in women, is one of the leading causes of ovulatory infertility in women of reproductive age. Due to its heterogeneous etiology, complex symptoms, and challenging treatment, PCOS has become a focal point of research in gynecological and reproductive medicine globally. The pathogenesis of PCOS is complex and may involve regulatory mechanisms such as inflammatory responses, oxidative stress, and cellular autophagy. Crown-like structures (CLSs) refer to pro-inflammatory microenvironments formed by macrophages engulfing adipocytes. The inflammatory disorders induced by CLSs are one of the key factors contributing to the development of PCOS and its complications. Current studies have indicated that the obese status in PCOS accelerates the formation of CLSs, and the density of CLSs can predict the progression of metabolic disorders and influence the outcomes of various metabolic diseases. Traditional Chinese Medicine (TCM) offers the unique advantages of a holistic view, four diagnostic methods, and syndrome differentiation and treatment to ameliorate the symptoms and signs of PCOS through multiple levels, pathways, and targets. Although studies on the mechanisms of metabolic diseases and CLS formation have been reported in China and abroad, there is still a lack of literature on the correlation between CLSs and PCOS, as well as reviews on TCM interventions targeting CLSs for treating this disease. Therefore, this paper summarized the correlation between obese PCOS and CLSs and reviewed recent studies on TCM interventions based on CLS formation (adipose tissue-macrophage inflammatory crosstalk) in the treatment of obese PCOS, aiming to provide new research perspectives for the prevention and treatment of PCOS using TCM.
5.Traditional Chinese Medicine in Regulating Crown-like Structures for Treatment of Obese PCOS: A Review
Wenyan TU ; Liqun YE ; Muyang LI ; Yihong YIN ; Ying SHEN ; Qidi LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):296-307
Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder in women, is one of the leading causes of ovulatory infertility in women of reproductive age. Due to its heterogeneous etiology, complex symptoms, and challenging treatment, PCOS has become a focal point of research in gynecological and reproductive medicine globally. The pathogenesis of PCOS is complex and may involve regulatory mechanisms such as inflammatory responses, oxidative stress, and cellular autophagy. Crown-like structures (CLSs) refer to pro-inflammatory microenvironments formed by macrophages engulfing adipocytes. The inflammatory disorders induced by CLSs are one of the key factors contributing to the development of PCOS and its complications. Current studies have indicated that the obese status in PCOS accelerates the formation of CLSs, and the density of CLSs can predict the progression of metabolic disorders and influence the outcomes of various metabolic diseases. Traditional Chinese Medicine (TCM) offers the unique advantages of a holistic view, four diagnostic methods, and syndrome differentiation and treatment to ameliorate the symptoms and signs of PCOS through multiple levels, pathways, and targets. Although studies on the mechanisms of metabolic diseases and CLS formation have been reported in China and abroad, there is still a lack of literature on the correlation between CLSs and PCOS, as well as reviews on TCM interventions targeting CLSs for treating this disease. Therefore, this paper summarized the correlation between obese PCOS and CLSs and reviewed recent studies on TCM interventions based on CLS formation (adipose tissue-macrophage inflammatory crosstalk) in the treatment of obese PCOS, aiming to provide new research perspectives for the prevention and treatment of PCOS using TCM.
6.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
7.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
8.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
9.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
10.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.

Result Analysis
Print
Save
E-mail