1.Mediating role of insulin resistance in the relationship between hypertension and NAFLD and construction of its risk prediction model.
Yaxuan HE ; Honghui HE ; Yu CAO ; Fang WANG
Journal of Central South University(Medical Sciences) 2025;50(7):1188-1201
OBJECTIVES:
Non-alcoholic fatty liver disease (NAFLD) and hypertension are common metabolic disorders, both closely associated with insulin resistance (IR), suggesting potential shared pathological mechanisms. This study aims to investigate the mediating role of IR in the relationship between hypertension and NAFLD, and to evaluate the applicability and modeling value of various IR surrogate indices in predicting NAFLD risk.
METHODS:
A total of 280 976 individuals who underwent health examinations at the Health Management Center of the Third Xiangya Hospital of Central South University between August 2017 and December 2021 were included. NAFLD was diagnosed based on abdominal ultrasound findings, and hypertension was defined according to the criteria of the Chinese Guidelines for the Management of Hypertension. Demographic information, anthropometric indices, and biochemical parameters were collected, and multiple IR surrogate indices were constructed, including the triglyceride-glucose index (TyG) and its derivatives, as well as the metabolic score for insulin resistance (METS-IR). Group comparisons were performed between hypertensive and non-hypertensive participants, as well as between NAFLD and non-NAFLD participants. Pearson correlation analysis was applied to assess the associations of metabolic parameters and IR indices with NAFLD. Furthermore, mediation models were constructed to explore the mediating role of IR in the "hypertension-NAFLD" relationship. Finally, parametric models and machine learning algorithms were compared to evaluate their predictive performance and value in assessing NAFLD risk in this population.
RESULTS:
The prevalence of NAFLD was significantly higher in hypertensive individuals than in non-hypertensive participants (63.61% vs 33.79%, P<0.001), accompanied by elevated IR levels and adverse metabolic features. Correlation analysis and variable importance rankings across multiple models consistently identified TyG-waist circumference (TyG-WC) and METS-IR as the IR indices most strongly associated with NAFLD. In mediation analysis, the TyG-WC pathway explained 32.03% of the total effect, and the METS-IR pathway explained 17.02%. Interaction analysis showed that hypertension status may attenuate the mediating effect of IR (all interaction estimates were negative). In prediction model comparisons, the simplified model incorporating sex, age, WC, TyG-WC, and METS-IR demonstrated good performance in the test set. Logistic regression and its regularized form (LASSO regression) achieved an accuracy of 0.83, receiver operating characteristic (ROC)-area under the curve (AUC) of 0.91, and a Brier score of 0.12, comparable to ensemble models (random forest and XGBoost), with consistently stable performance across different algorithms.
CONCLUSIONS
IR plays a significant mediating role in the association between hypertension and NAFLD, with TyG-WC identified as a key indicator showing strong mechanistic relevance and predictive value. Risk prediction models based on IR surrogate indices demonstrate advantages in simplicity and interpretability, providing empirical support for the early screening and individualized prevention of NAFLD in the general population.
Humans
;
Non-alcoholic Fatty Liver Disease/complications*
;
Insulin Resistance
;
Hypertension/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Risk Factors
;
Adult
;
Machine Learning
;
Triglycerides/blood*
2.NAT10 inhibition alleviates astrocyte autophagy by impeding ac4C acetylation of Timp1 mRNA in ischemic stroke.
Li YANG ; Xiaotong LI ; Yaxuan ZHAO ; Hao CHEN ; Can WANG ; Angrong WU ; Xintong GUO ; Yue HUANG ; Qihui WANG ; Lingyun HAO ; Xiaowen LI ; Ying JI ; Jin BAN ; Guangtian WANG ; Junli CAO ; Zhiqiang PAN
Acta Pharmaceutica Sinica B 2025;15(5):2575-2592
Although a single nucleotide polymorphism for N-acetyltransferase 10 (NAT10) has been identified in patients with early-onset stroke, the role of NAT10 in ischemic injury and the related underlying mechanisms remains elusive. Here, we provide evidence that NAT10, the only known RNA N4-acetylcytidine (ac4C) modification "writer", is increased in the damaged cortex of patients with acute ischemic stroke and the peri-infarct cortex of mice subjected to photothrombotic (PT) stroke. Pharmacological inhibition of NAT10 with remodelin on Days 3-7 post-stroke or astrocytic depletion of NAT10 via targeted virus attenuates ischemia-induced infarction and improves functional recovery in PT mice. Mechanistically, NAT10 enhances ac4C acetylation of the inflammatory cytokine tissue inhibitor of metalloproteinase 1 (Timp1) mRNA transcript, which increases TIMP1 expression and results in the accumulation of microtubule-associated protein 1 light chain 3 (LC3) and progression of astrocyte autophagy. These findings demonstrate that NAT10 regulates astrocyte autophagy by targeting Timp1 ac4C after stroke. This study highlights the critical role of ac4C in the regulation of astrocyte autophagy and proposes a promising strategy to improve post-stroke outcomes via NAT10 inhibition.
3.Effects of Shenfu yixin granule on mitochondrial autophagy of cardiomyocytes in rats with heart failure after acute yocardial infarction
Yaxuan CAO ; Rongfei ZHENG ; He WANG ; Yingjie CAO ; Wenjie DONG ; Lin CUI ; Bin LI ; Yushan CHEN ; Mingjun ZHU
China Pharmacy 2022;33(10):1183-1188
OBJECTIVE To study the effects of Shenfu yixin granule on mitochondrial autophagy of cardiomyocytes in rats with heart failure after acute myocardial infarction. METHODS The model of heart failure after acute myocardial infarction was established by ligaturing the anterior descending branch of the left coronary artery in rats. The model rats were divided into model group,Shenfu yixin granule low-dose and high-dose groups (1.76,8.8 g/kg),Fosinopril sodium tablets group (positive control ,4 mg/kg),sham operation group was set up (only threading without ligation at the same position ),with 8 rats in each group. After 4 weeks of drug intervention ,the hemodynamic indexes of rats in each group were measured by physiological recorder. The pathological changes of myocardial tissue were observed in each group. The level of oxidative stress in cardiomyocytes , mitochondrial membrane potential ,protein expression of PTEN-induced putative kinase 1(PINK1),E3 ubiquitin ligase Parkin and ubiquitin binding protein P 62 in myocardial tissue of rats in each group were detected. RESULTS Compared with sham operation group ,the pathological injuries such as myocardial fiber morphology disorder and inflammatory cell infiltration were serious. The left ventricular end systolic pressure (LVESP),maximum rate of rise of left ventricular internal pressure (+dp/dtmax), maximun rate of decrease of left ventricular internal pressure (-dp/dtmax),total antioxidant capacity ,mitochondrial membrane potential,PINK1,Parkin and P 62 protein expression were significantly decreased in model group (P<0.01). The left ventricular end diastolic pressure (LVEDP),the level of reactive oxygen species and the activity of reduced nicotinamide adenine dinucleotide phosphate in left ventricular ischemic cardiomyocytes were significantly increased (P<0.01). Compared with model group ,the pathological injuries of myocardial tissue in intervention groups were alleviated ,and above indexes were improved in varying degrees(P<0.01 or P<0.05). CONCLUSIONS Shenfu y ixin granule can reduce the level of oxidative stress and alleviate heart failure after acute myocardial infarction ,which may be related to the activation of Parkin-dependent pathway to strengthen mitochondrial autophagy and reduce mitochondrial dysfunction.
4.Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome.
Chaojuan YANG ; Yonglu TIAN ; Feng SU ; Yangzhen WANG ; Mengna LIU ; Hongyi WANG ; Yaxuan CUI ; Peijiang YUAN ; Xiangning LI ; Anan LI ; Hui GONG ; Qingming LUO ; Desheng ZHU ; Peng CAO ; Yunbo LIU ; Xunli WANG ; Min-Hua LUO ; Fuqiang XU ; Wei XIONG ; Liecheng WANG ; Xiang-Yao LI ; Chen ZHANG
Protein & Cell 2022;13(3):203-219
Many people affected by fragile X syndrome (FXS) and autism spectrum disorders have sensory processing deficits, such as hypersensitivity to auditory, tactile, and visual stimuli. Like FXS in humans, loss of Fmr1 in rodents also cause sensory, behavioral, and cognitive deficits. However, the neural mechanisms underlying sensory impairment, especially vision impairment, remain unclear. It remains elusive whether the visual processing deficits originate from corrupted inputs, impaired perception in the primary sensory cortex, or altered integration in the higher cortex, and there is no effective treatment. In this study, we used a genetic knockout mouse model (Fmr1KO), in vivo imaging, and behavioral measurements to show that the loss of Fmr1 impaired signal processing in the primary visual cortex (V1). Specifically, Fmr1KO mice showed enhanced responses to low-intensity stimuli but normal responses to high-intensity stimuli. This abnormality was accompanied by enhancements in local network connectivity in V1 microcircuits and increased dendritic complexity of V1 neurons. These effects were ameliorated by the acute application of GABAA receptor activators, which enhanced the activity of inhibitory neurons, or by reintroducing Fmr1 gene expression in knockout V1 neurons in both juvenile and young-adult mice. Overall, V1 plays an important role in the visual abnormalities of Fmr1KO mice and it could be possible to rescue the sensory disturbances in developed FXS and autism patients.
Animals
;
Disease Models, Animal
;
Fragile X Mental Retardation Protein/metabolism*
;
Fragile X Syndrome/metabolism*
;
Humans
;
Mice
;
Mice, Knockout
;
Neurons/metabolism*
5.Direct electrical stimulation and awake anaesthesia for eloquent brain regions surgery involved in eloquent areas
Wenping CAO ; Chunsheng ZHAO ; Yaxuan ZHANG ; Shengwu CAO
Chinese Journal of Neuromedicine 2015;14(1):64-67
Objective To explore the application of the awake anesthesia and intra-operative cortico-subcortical electro-stimulation in the surgery for patients with lesions in eloquent areas.Methods Retrospective analysis of 10 patients with lesions in eloquent area,admitted to our hospital from May 2011 to December 2013,was performed.Neuroimaging was used to assess the location of the lesions before surgery,neuron-navigation was used in the craniotomy,awake anesthesia and intra-operative cortico-subcortical electro-stimulation in the surgery of lesions in eloquent areas was performed; and then,total excision of the lesions was adopted.Results Specific motor response was monitored in all the 10 patients accepted cortico-subcortical electro-stimulation,which was matched with that from anterior central gyrus; 5 of them also performed electrophotoluminescence in the language area could be detected with positive reactions.In all 10 patients,total resection was achieved in 8 and subtotal excision in 2.Two patients had transient language dysfunction after operation and got improvement within one week,and recovered to the normal state in three weeks.Myodynamia transitorily decreased in 3 patients after operation and started recovery in one week and achieved the normal state in three month.Perpetual aphasis was noted in all the patients.Conclusion Awake anesthesia and intraoperative direct electrical stimulation were helpful to distinguish lesions from eloquent area,which is a reliable,precise,and safe eloquent area location method; maximum resection of the lesions and minimal damage to the eloquent area can be achieved and the life quality of patients can be improved.

Result Analysis
Print
Save
E-mail