1.Mechanism of Ferroptosis in Regulating Chronic Heart Failure and Traditional Chinese Medicine Prevention and Treatment Based on Qi Deficiency and Stagnation: A Review
Ziyang YUAN ; Yan ZHANG ; Wei ZHANG ; Yaqin WANG ; Wenjun MAO ; Guo YANG ; Xuewei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):248-255
Chronic heart failure (CHF) is the final stage of cardiovascular diseases. It is a complex syndrome, with dyspnea and edema as the main clinical manifestations, and it is characterized by complex disease conditions, difficult cure, and high mortality. Ferroptosis, a new type of programmed cell death, is different from other types of programmed cell death. Ferroptosis is iron-dependent, accompanied by lipid peroxide accumulation and mitochondrial shrinkage, becoming a hot research topic. Studies have confirmed that ferroptosis plays a key role in the occurrence and development of CHF. The regulation of ferroptosis may become a potential target for the treatment of CHF in the future. The theory of Qi deficiency and stagnation refers to the pathological state of original Qi deficiency and abnormal transportation and distribution of Qi, blood, and body fluid, which has guiding significance for revealing the pathogenesis evolution of some chronic diseases. We believe that Qi deficiency and stagnation is a summary of the pathogenesis of ferroptosis in CHF. Deficiency of Qi (heart Qi) is the root cause of CHF, and stagnation (phlegm turbidity and blood stasis) is the branch of this disease. The two influence each other in a vicious circle to promote the development of this disease. Traditional Chinese medicine (TCM) plays an important role in the treatment of CHF, improving the prognosis and quality of life of CHF patients. This paper explores the correlation between the theory of Qi deficiency and stagnation and the mechanism of ferroptosis in CHF. Furthermore, this paper reviews the mechanism of Chinese medicines and compound prescriptions in preventing and treating CHF by regulating ferroptosis according to the principles of replenishing Qi and dredging to remove stagnation, aiming to provide new ideas and methods for the treatment of CHF with TCM.
2.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
3.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
4.Yinqiao Powder affects macrophage polarization-mediated herpes simplex keratitis through the cGAS-STING-IRF3 molecular pathway
Ning YAO ; Rongli ZHAO ; Xuemei YANG ; Yuhuan LIU ; Yaqin DING ; Yan DAI
International Eye Science 2025;25(8):1227-1233
AIM: To investigate the specific molecular mechanism of Yinqiao Powder in affecting macrophage polarization in herpes simplex keratitis(HSK)through the cyclic GMP-AMP synthetase(cGAS)-stimulator of interferon genes(STING)-interferon regulatory factor 3(IRF3)molecular pathway.METHODS:Human corneal epithelial cells(HCE-T)were divided into control, HSK, and HSK + Yinqiao Powder groups. M0 macrophages were grouped as Ctrl, HSV-1, HSV-1+oe-cGAS, HSV-1+Yinqiao Powder, and HSV-1+oe-cGAS+Yinqiao Powder. Conditional medium(CM)from each group of M0 macrophages was collected to intervene in HCE-T cells and divided into Ctrl-CM, HSV-1-CM, HSV-1+oe-cGAS-CM, and HSV-1+Yinqiao Powder-CM groups. Cell viability was detected by MTT assay, and apoptosis was detected by TUNEL assay. ELISA was used to detect the concentrations of Arg-1 and iNOS in cell supernatants, and Western blotting was used to detect the relative protein expressions of cGAS, STING, and IRF3. Balb/c mice were divided into control, model, and drug groups. The model and drug groups were inoculated with HSV-1 on the cornea of Balb/c mice using the corneal scratch method to construct an HSK mouse model, and the drug group was treated with Yinqiao Powder. The incidence and mortality of the three groups were compared on days 1, 3, 5, 7, and 14 after modeling.RESULTS:Compared with the control group, the HCE-T cell viability in the HSK group was decreased but apoptosis was increased, which was reversed by Yinqiao Powder intervention. Compared with the Ctrl group, the Arg-1 concentration in the cell supernatant of the HSV-1 group was decreased, the iNOS concentration was increased, and the protein expressions of cGAS, STING, and IRF3 were decreased. Compared with the HSV-1 group, the Arg-1 concentration was increased, the iNOS concentration was decreased, and the protein expressions of cGAS, STING, and IRF3 were enhanced in the HSV-1+oe-cGAS group and the HSV-1+Yinqiao Powder group, and the same results were obtained in the HSV-1+oe-cGAS+Yinqiao Powder group. Compared with the Ctrl-CM group, the HCE-T cell viability was decreased and apoptosis was increased in the HSV-1-CM group, which was reversed by overexpressing cGAS in macrophages or intervening with Yinqiao Powder. In vivo experiments found that Yinqiao Powder intervention could improve the pathological progression of keratitis.CONCLUSION:Yinqiao Powder inhibits M1 polarization of macrophages through the cGAS-STING-IRF3 molecular pathway, thereby delaying the progression of HSK.
5.Epidemiological characteristics and spatial clustering of brucellosis in Shanxi Province
WEI Zhiyun ; LUO Xiaofei ; YU Yingjie ; HE Yaqin ; YANG qian ; DOU Qiang
Journal of Preventive Medicine 2025;37(8):842-845
Objective :
To analyze the epidemiological characteristics and spatial clustering of brucellosis in Shanxi Province from 2019 to 2023, so as to provide a reference for formulating prevention and control measures of brucellosis.
Methods:
The case data of brucellosis in Shanxi Province from 2019 to 2023 were collected through the Infectious Disease Surveillance System of the Chinese Disease Prevention and Control Information System. The seasonal distribution, population distribution, and region distribution of brucellosis cases were described. Spatial autocorrelation analysis was applied to explore the spatial clustering characteristics of brucellosis.
Results:
A total of 21 241 human brucellosis cases were reported in Shanxi Province from 2019 to 2023, with an average annual reported incidence of 11.87/100 000, showing an upward trend (P<0.05). The peak incidence period was from March to August, with 14 163 cases reported cumulatively, accounting for 66.68% of the total. There were 16 336 male cases and 4 905 female cases, with a male-to-female ratio of 3.33:1. The high-incidence age group was 40-<70 years, with 15 675 cases accounting for 73.80%. The majority of patients were farmers, with 17 926 cases accounting for 84.39%. Spatial autocorrelation analysis showed that there was spatial clustering in the incidence of brucellosis from 2019 to 2023 (all Moran's I>0, P<0.05). The high-high clustering areas were mainly Datong City, and Shuozhou City in northern Shanxi, and Linfen City in the southern Shanxi. The low-low clustering areas were mainly Taiyuan City and Yangquan City in central Shanxi, and Changzhi City and Jincheng City in southeastern Shanxi.
Conclusions
From 2019 to 2023, the reported incidence of brucellosis in Shanxi Province showed an upward trend. The incidence peaked from March to August, and males, middle-aged and elderly people and farmers were the high-risk groups. There was spatial clustering and the high-high clustering areas gradually expanded from northern Shanxi to southern Shanxi.
6.A CYP80B enzyme from Stephania tetrandra enables the 3'-hydroxylation of N-methylcoclaurine and coclaurine in the biosynthesis of benzylisoquinoline alkaloids.
Yaoting LI ; Yuhan FENG ; Wan GUO ; Yu GAO ; Jiatao ZHANG ; Lu YANG ; Chun LEI ; Yun KANG ; Yaqin WANG ; Xudong QU ; Jianming HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):630-640
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant metabolites renowned for their pharmacological properties. However, sustainable sources for these compounds remain limited. Consequently, researchers are focusing on elucidating BIA biosynthetic pathways and genes to explore alternative sources using synthetic biology approaches. CYP80B, a family of cytochrome P450 (CYP450) enzymes, plays a crucial role in BIA biosynthesis. Previously reported CYP80Bs are known to catalyze the 3'-hydroxylation of (S)-N-methylcoclaurine, with the N-methyl group essential for catalytic activity. In this study, we successfully cloned a full-length CYP80B gene (StCYP80B) from Stephania tetrandra (S. tetrandra) and identified its function using a yeast heterologous expression system. Both in vivo yeast feeding and in vitro enzyme analysis demonstrated that StCYP80B could catalyze N-methylcoclaurine and coclaurine into their respective 3'-hydroxylated products. Notably, StCYP80B exhibited an expanded substrate selectivity compared to previously reported wild-type CYP80Bs, as it did not require an N-methyl group for hydroxylase activity. Furthermore, StCYP80B displayed a clear preference for the (S)-configuration. Co-expression of StCYP80B with the CYP450 reductases (CPRs, StCPR1, and StCPR2), also cloned from S. tetrandra, significantly enhanced the catalytic activity towards (S)-coclaurine. Site-directed mutagenesis of StCYP80B revealed that the residue H205 is crucial for coclaurine catalysis. Additionally, StCYP80B exhibited tissue-specific expression in plants. This study provides new genetic resources for the biosynthesis of BIAs and further elucidates their synthetic pathway in natural plant systems.
Cytochrome P-450 Enzyme System/chemistry*
;
Benzylisoquinolines/chemistry*
;
Hydroxylation
;
Plant Proteins/chemistry*
;
Alkaloids/metabolism*
;
Stephania tetrandra/genetics*
7.Association of high triglyceride glucose index with increased mortality in peritoneal dialysis:A cohort study
Shan YANG ; Hongying LI ; Jingxuan ZHOU ; Yaode CHEN ; Yaqin LI ; Ziqi GU ; Hongxin NIU
The Journal of Practical Medicine 2024;40(3):371-377
Objective The objective of this study is to investigate whether there is a correlation between a high TyG index(serum triglyceride glucose index)and higher mortality rates among patients undergoing peritoneal dialysis(PD).Methods This study utilized a single-center retrospective cohort as the basis for its methods..From January 1,2007 to December 31,2015,a total of 519 PD patients kept under observation until December 31,2018.There searchers employed the Kaplan-Meier method and Cox proportional hazards modelsto examine the cor-relation between TyG index levels and mortality.Results Over a period of 40.5 months,104(20.0%)individuals with Parkinson's disease passed away,with 55(52.9%)of these deaths attributed to cardiovascular disease(CVD).The serum median TyG index at baseline was 8.44(6.48,11.94).Through Cox regression analysis subject to the adjustments of such parameters as gender,age,body mass index(BMI),presence of cardiovascular disease,hypertension,diabetes mellitus,hemoglobin,serum albumin,serum Ferritin,total cholesterol,renal residual function(RRF),An increased risk of all-cause mortality(HR = 2.22,95%CI:1.43~3.44,P<0.001)and CVD mortality(HR = 2.50,95%CI:1.34~4.65,P = 0.004)was observed with a higher baseline TyG index(8.44).A comparable impact was observed in the correlation between the average TyG index over time(TA-TyG index)and both all-cause mortality and CVD mortality.(HR = 1.90,95%CI:1.25~2.90,P = 0.003;HR = 2.05,95%CI:1.14~3.70,P = 0.017,respectively).Conclusion PD patients with a higher serum TyG index have a greater risk of all-cause mortality and mortality related to cardiovascular disease.
8.Not only baseline but cumulative exposure of remnant cholesterol predicts the development of nonalcoholic fatty liver disease: a cohort study.
Lei LIU ; Changfa WANG ; Zhongyang HU ; Shuwen DENG ; Saiqi YANG ; Xiaoling ZHU ; Yuling DENG ; Yaqin WANG
Environmental Health and Preventive Medicine 2024;29():5-5
BACKGROUND AND AIM:
Remnant cholesterol (remnant-C) mediates the progression of major adverse cardiovascular events. It is unclear whether remnant-C, and particularly cumulative exposure to remnant-C, is associated with nonalcoholic fatty liver disease (NAFLD). This study aimed to explore whether remnant-C, not only baseline but cumulative exposure, can be used to independently evaluate the risk of NAFLD.
METHODS:
This study included 1 cohort totaling 21,958 subjects without NAFLD at baseline who underwent at least 2 repeated health checkups and 1 sub-cohort totaling 2,649 subjects restricted to those individuals with at least 4 examinations and no history of NAFLD until Exam 3. Cumulative remnant-C was calculated as a timeweighted model for each examination multiplied by the time between the 2 examinations divided the whole duration. Cox regression models were performed to estimate the association between baseline and cumulative exposure to remnant-C and incident NAFLD.
RESULTS:
After multivariable adjustment, compared with the quintile 1 of baseline remnant-C, individuals with higher quintiles demonstrated significantly higher risks for NAFLD (hazard ratio [HR] 1.48, 95%CI 1.31-1.67 for quintile 2; HR 2.07, 95%CI 1.85-2.33 for quintile 3; HR 2.55, 95%CI 2.27-2.88 for quintile 4). Similarly, high cumulative remnant-C quintiles were significantly associated with higher risks for NAFLD (HR 3.43, 95%CI 1.95-6.05 for quintile 2; HR 4.25, 95%CI 2.44-7.40 for quintile 3; HR 6.29, 95%CI 3.59-10.99 for quintile 4), compared with the quintile 1.
CONCLUSION
Elevated levels of baseline and cumulative remnant-C were independently associated with incident NAFLD. Monitoring immediate levels and longitudinal trends of remnant-C may need to be emphasized in adults as part of NAFLD prevention strategy.
Adult
;
Humans
;
Cohort Studies
;
Non-alcoholic Fatty Liver Disease/etiology*
;
Cholesterol
;
Proportional Hazards Models
;
Risk Factors
9.Analysis of the regulatory effect of Angelica dahurica on the MrgprD-TRPA1 pathway in neuropathic pain
Leying GU ; Niuniu YANG ; Kangying YU ; Yaqin MENG ; Shaozheng SONG
Acta Laboratorium Animalis Scientia Sinica 2024;32(2):219-229
Objective To analyze and explore the analgesic effect of Angelica dahurica in neuropathic pain and its regulatory effect on the Mas-related G-protein coupled receptor member D(MrgprD)-transient receptor potential ankyrin 1(TRPA1)signaling pathway,using a mouse model of sciatic nerve chronic constriction injury(CCI).Methods A CCI mouse model was prepared by sterile surgical ligation and wrapping of the sciatic nerve in 30 mice.Pain-related behavioral changes induced by mechanical stimulation were detected by the VonFrey method,and the thermal hyperalgesic effects of Angelica dahurica were evaluated by thermal radiation experiments.The effects of Angelica dahurica on the protein expression levels MrgprD and TRPA1,the number of dorsal root ganglion(DRG)positive neurons,and mRNA levels of MrgprD and TRPA1 in mice were detected by Western Blot,immunofluorescence,and reverse transcription-polymerase chain reaction,respectively.Differences in fluorescence signal intensity in HEK293 cells after single transfection and co-transfection with MrgprD and TRPA1 plasmids,respectively,were analyzed by calcium imaging experiments.Results A total of 25 CCI mouse models were successfully prepared,with a modeling rate of 83.33%(25/30).The mechanical threshold and foot retraction latency were significantly higher in CCI mice treated with Angelica dahurica compared with the control group(P<0.05).Expression levels of MrgprD and TRPA1 proteins were significantly lower in CCI mice treated with Angelica dahurica than in the control group(P<0.05).The number of MrgprD-and TRPA1-positive neurons in the DRG was significantly lower group(P<0.05)and the mRNA levels of MrgprD and TRPA1 were also significantly lower in CCI mice treated with Angelica dahurica than in the control group(P<0.05).The fluorescence intensity was significantly higher in HEK293 cells co-transfected with MrgprD and TRPA1 plasmids than in single-transfected and blank control cells(P<0.05).Conclusions This study demonstrated that the MrgprD-TRPA1 pathway is an important target for neuropathic pain,and indicated that Angelica dahurica can inhibit neuropathic pain by regulating this signal transduction pathway.These result provide a foundation for further research on the development of new clinical analgesic drugs and analgesic mechanisms.
10.Role of Mitophagy in Prevention and Treatment of Heart Failure Based on PINK1/Parkin Pathway and Treatment with Traditional Chinese Medicine: A Review
Ziyang YUAN ; Yan ZHANG ; Wei ZHANG ; Yaqin WANG ; Wenjun MAO ; Guo YANG ; Xuewei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):262-271
Heart failure is a group of complex clinical syndromes that represent the final stage of cardiovascular disease development, characterized by an extremely high mortality rate. However, due to the complexity of the pathological mechanisms, an effective treatment method has not yet been found. Mitochondria are among the most critical organelles in cells, playing an essential role in energy supply and widely participating in various life activities, such as the regulation of oxidative stress and apoptosis. The normal functioning of mitochondria is crucial for maintaining the body's normal life activities. In recent years, studies have found that mitochondrial dysfunction is associated with the occurrence and progression of various diseases, particularly closely related to the onset of heart failure. An imbalance in mitochondrial homeostasis is a key factor in cardiomyocyte death and the onset of heart failure. Mitochondrial autophagy, as a means of regulating mitochondrial homeostasis, is significant for the prevention and treatment of heart failure. Traditional Chinese medicine (TCM) therapy is a unique treatment approach in China now widely applied in clinical practice, demonstrating significant efficacy in treating heart failure, with unique advantages. Modern pharmacological research indicates that Chinese medicine monomers and compounds can target and regulate mitochondrial homeostasis in cardiomyocytes, affect mitochondrial autophagy, and protect cardiomyocytes, though the specific mechanisms remain unclear. Therefore, this paper explored the mechanisms of the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway in mitochondrial autophagy and heart failure, reviewed the effects of PINK1/Parkin-mediated mitochondrial autophagy on heart failure, and discussed the therapeutic effects of PINK1/Parkin-mediated mitochondrial autophagy on heart failure in conjunction with TCM. This paper is expected to provide new ideas and methods for the prevention and treatment of heart failure from the perspective of PINK1/Parkin regulation of mitochondrial autophagy.


Result Analysis
Print
Save
E-mail