1.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
2.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
3.Shashen Maidong Tang Enhances Efficacy of Chemotherapy in Mouse Model of Lewis Lung Cancer by Modulating JAK2/STAT3 Signaling Pathway
Lin YU ; Yaoyao WANG ; Limin LIU ; Zuowei HU ; Yanping ZHOU ; Shang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):1-10
ObjectiveTo predict the mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer via network pharmacology and validate the prediction results in animal experiments. MethodsThe potential mechanism through which Shasheng Maidong Tang enhances the efficacy of chemotherapy for lung cancer was predicted by network pharmacology, liquid chromatography-mass spectrometry (LC-MS), and molecular docking methods. C57/BL6 mice were assigned into normal, model, cisplatin, and Shasheng Maidong Tang+cisplatin groups. In addition to the normal group, the remaining groups were injected subcutaneously with 0.2 mL of 1×107 cells·mL-1 Lewis lung cancer cells to establish the Lewis lung cancer model. The daily gavage dose of Shasheng Maidong Tang was 3.58 g·kg-1, and the concentration of cisplatin intraperitoneally injected on every other day was 2 mg·kg-1. Drugs were administered for 14 d. The changes in the tumor volume and the rate of tumor suppression were monitored, and the tumor histopathological changes were observed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay was employed to measure the interleukin (IL)-6 and interferon (IFN)-γ levels in peripheral blood. Real-time PCR was performed to quantify the mRNA levels of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and signal transducer and activator of transcription 3 (STAT3) in the tumor tissue of mice. Western blot was employed to determine the protein levels of JAK2, STAT3, B-cell lymphoma-2 (Bcl-2), cysteinyl aspartate-specific proteinase-3 (Caspase-3), and Pim-1 proto1 (PIM1) in the tumor tissue. Immunohistochemistry was employed to detect the expression of Bcl-2 and PIM1 in the tumor tissue. ResultsNetwork pharmacological predictions indicated that Shasheng Maidong Tang might enhance the efficacy of chemotherapy for lung cancer by regulating nitrogen metabolism, AGE-RAGE signaling pathway, cancer pathway, and JAK/STAT signaling pathway. The experimental results demonstrated that tumor volume in the cisplatin group and Shasheng Maidong Tang+cisplatin group was reduced compared with the model group, with statistically distinct differences observed on days 14, 17, 20 post modeling (P<0.05). Notably, the Shasheng Maidong Tang+cisplatin therapy further decreased tumor volume compared with the cisplatin group, showing marked reductions on days 17 and 20 (P<0.05), consistent with trends visualized in tumor volume comparison charts. The Shasheng Maidong Tang+cisplatin group exhibited higher tumor inhibition rate than the cisplatin group (P<0.05). Histopathological analysis via HE staining revealed that the tumors in the model group displayed frequent nuclear mitosis, densely arranged cells, hyperchromatic nuclei, and no necrosis. Cisplatin treatment induced partial necrosis and vacuolization, while the Shasheng Maidong Tang+cisplatin group exhibited extensive necrotic regions, maximal vacuolization, disarranged tumor cells, and minimal mitotic activity. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed elevated level of IFN-γ (P<0.01) and declined level of IL-6 (P<0.01) in the peripheral blood. Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented elevated level of IFN-γ (P<0.01) and lowered level of IL-6 (P<0.01) in the peripheral blood. Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin groups showed down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level STAT1 (P<0.01). Compared with the cisplatin group, the Shasheng Maidong Tang+cisplatin group presented down-regulated mRNA levels of JAK2 and STAT3 (P<0.01) and up-regulated mRNA level of STAT1 (P<0.01). Compared with the model group, the cisplatin group and the Shasheng Maidong Tang+cisplatin group showed down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), and STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). Compared with the cisplatin group, Shasheng Maidong Tang+cisplatin group presented down-regulated protein levels of JAK2 (P<0.01), Bcl-2 (P<0.01), PIM1 (P<0.01), STAT3 (P<0.05), and up-regulated protein level of Caspase-3 (P<0.01). The Bcl-2 and PIM1 expression results obtained by immunohistochemistry were consistent with those of Western blot. ConclusionShasheng Maidong Tang may enhance the efficacy of chemotherapy in the mouse model of Lewis lung cancer by regulating the JAK2/STAT3 signaling pathway.
4.Epidemiological characteristics and risk factors of chronic kidney disease in patients with 10 years of hypertension
RUN GUO ; Wen SI ; Yaoyao CUI ; Yiqing CHEN ; Qiao LIU
Journal of Public Health and Preventive Medicine 2025;36(2):39-42
Objective To analyze the epidemiological characteristics and risk factors of chronic kidney disease in patients with 10 years of hypertension. Methods A total of 350 patients with 10 years or longer course of hypertension who underwent physical examination in the Second Affiliated Hospital of Air Force Medical University from June 2021 to June 2024 were selected. General information of the patients was collected through questionnaires. Renal function related indicators and imaging results were obtained through relevant laboratory tests and imaging examinations. Based on the results of renal function related indicators, the epidemiological characteristics of chronic kidney disease in hypertensive patients with 10 years of hypertension, as well as risk factors for chronic kidney disease in the hypertensive patients were identified. Results Among the 350 patients enrolled in this study, there were 71 (20.29%) with proteinuria, 32 (9.14%) with hematuria, and 40 (11.43%) with decreased renal function. A total of 80 (22.86%) cases with structural variations such as kidney stones and cysts were detected by renal B-mode ultrasound. There were 121 (34.57%) patients with hypertension and chronic kidney disease. There were statistically significant differences in gender, age, diabetes, hyperlipidemia and hyperuricemia between patients with chronic kidney disease and those without (P<0.05). Multivariate logistic regression analysis results showed that gender, age, diabetes, hyperlipidemia, and hyperuricemia were the risk factors for chronic kidney disease in patients with hypertension (P<0.05). Conclusion Patients with 10 years of hypertension have a high risk of chronic kidney disease, and the risk factors include gender, age, diabetes, hyperuricemia, and hyperlipidemia.
5.The mediating role of mindfulness between work immersion and professional well-being among clinical nurses
Yaoyao XIA ; Yi LI ; Huan LIU ; Chao OUYANG
China Occupational Medicine 2025;52(3):270-275
Objective To explore the mediating role of mindfulness between work immersion and professional well-being in clinical nurses. Methods A total of 477 clinical nurses were selected as the research subjects using the convenience sampling method. The levels of mindfulness, work immersion, and professional well-being among the clinical nurses were surveyed using the Mindful Attention Awareness Scale, the Emergency Department Nurse Work Immersion Experience Questionnaire, and the Medical Workers' Professional Well-being Scale, respectively. A structural equation model was constructed using AMOS 26.0 software. Results The total scores of mindfulness level, work immersion, and professional well-being among clinical nurses were (68.9±11.4), (134.1±20.2), and (89.1±12.6) points, respectively. The total score of mindfulness level was positively correlated with work immersion and professional well-being [correlation coefficients (r) were 0.566 and 0.344, respectively, both P<0.01], and the total score of work immersion was positively correlated with professional well-being (r=0.431, P<0.01). The mediating effect of mindfulness in work immersion and professional well-being was 0.059, with a 95% confidence interval of (0.014-0.108), accounting for 19.5% of the total effect. Conclusion The level of mindfulness among clinical nurses is relatively high. Mindfulness plays a partial mediating role between work immersion and professional well-being.
6.Mechanism of acupuncture on cerebral ischemia-reperfusion injury via p53/SLC7A11/GPX4 signaling pathway in rat models.
Qi WANG ; Ziwen HOU ; Yaoyao LIU ; Dan WEI ; Qingjie KONG ; Xia CHEN
Chinese Acupuncture & Moxibustion 2025;45(8):1099-1110
OBJECTIVE:
To explore the neuroprotective effect and underlying mechanism of Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) in the rat models of cerebral ischemia-reperfusion injury (CIRI) based on the p53 protein (p53)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway.
METHODS:
Of 102 male Wistar rats, 20 rats were randomly collected as a sham-operation group. Using a modified external carotid artery filament insertion method, CIRI models were prepared by occluding the middle cerebral artery in the rest rats. After modeling and excluding 1 non-successfully modeled rat and 1 dead one, the other modeled rats were randomized into a model group, an agonist group, an acupuncture group, and an acupuncture + agonist group, 20 rats in each one. Xingnao Kaiqiao acupuncture therapy was delivered in the rats of the acupuncture group and the acupuncture + agonist group. The acupoints included "Shuigou" (GV26), bilateral "Neiguan" (PC6), and "Sanyinjiao" (SP6) on the affected side. Electroacupuncture was attached to "Neiguan" (PC6) and "Sanyinjiao" (SP6) on the affected side, with dense-disperse wave, a frequency of 2 Hz/15 Hz and intensity of 1 mA. The intervention was delivered twice daily, 20 min each time and for 7 consecutive days. In the agonist group and acupuncture+agonist group, p53 agonist, COTI-2 was intraperitoneally injected (15 mg/kg), once daily for 7 consecutive days. Neurological deficit was evaluated using Zausinger's six-point scale. Cerebral infarction volume was quantified by triphenyl tetrazolium chloride (TTC) staining. Histopathological changes were observed using hematoxylin-eosin (HE) staining. Iron deposition was assessed by Prussian blue staining. Mitochondrial ultrastructure in the ischemic cortex was examined under transmission electron microscopy (TEM). Serum iron (Fe2+) was measured with chromometry. Malondialdehyde (MDA) and glutathione (GSH) levels in the ischemic hippocampus were determined using thiobarbituric acid and microplate assays, respectively. The mean fluorescence intensity of reactive oxygen species (ROS) in the ischemic cortex was analyzed by flow cytometry. The mRNA and protein expression of GPX4, SLC7A11, and p53 in the ischemic hippocampus were evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting, respectively.
RESULTS:
Compared with the sham-operated group, the model group exhibited the decrease in neurological deficit score (P<0.01), and the increase in cerebral infarction volume percentage (P<0.01). The changes of brain tissue were presented in extensive cellular necrosis, pyknotic and deeply-stained nuclei, and vacuolar degeneration. The iron deposition was elevated in cortex and hippocampus (P<0.01), mitochondrial membrane density increased, the cristae was broken or reduced, and the outer membrane ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were elevated (P<0.01) and the level of GSH was reduced (P<0.01). The mRNA and protein expression of GPX4 and SLC7A11 was reduced (P<0.01), while that of p53 rose (P<0.01). When compared with the model group, in the agonist group, the neurological deficit score was reduced (P<0.05), the percentage of infarction volume was higher (P<0.01), the histopathological damage was further exacerbated, and the percentage of iron deposition increased in the cortex and hippocampus (P<0.01). The mitochondrial quantity decreased, the membrane density increased, the mitochondrial cristae were broken or reduced, and the outer membrane was ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were higher (P<0.01, P<0.05) and the level of GSH was reduced (P<0.05). The mRNA and protein expression of GPX4 and SLC7A11 decreased (P<0.01, P<0.05), while that of p53 was elevated (P<0.01). Besides, in comparison with the model group, the neurological deficit score was higher in the acupuncture group and the acupuncture + agonist group (P<0.01, P<0.05), the percentage of cerebral infarction volume was lower in the acupuncture group (P<0.01), the pathological damage of brain tissue was alleviated in the acupuncture group and the acupuncture + agonist group, and the percentage of iron depositiondecreased in the cortex and hippocampus (P<0.01). The mitochondrial structure was relatively clear, the mitochondrial cristae were fractured or reduced mildly in the acupuncture group and the acupuncture + agonist group. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were lower (P<0.01) and the level of GSH was higher (P<0.01) in the acupuncture group. The mean fluorescence intensity of ROS were dropped (P<0.01) in the acupuncture + agonist group. The mRNA expression of GPX4 and SLC7A11 was elevated (P<0.01) and that of p53 was reduced (P<0.01, P<0.05) in either the acupuncture group or the acupuncture + agonist group; the protein expression of GPX4 and SLC7A11 rose (P<0.05, P<0.01) and that of p53 was dropped (P<0.01) in the acupuncture group; and the protein expression of p53 was also lower in the acupuncture + agonist group (P<0.05). When compared with the agonist group, in the acupuncture + agonist group, neurological deficit score increased (P<0.01), the percentage of cerebral infarction volume decreased (P<0.01), the pathological brain tissue damage was reduced, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was relatively clear and the cristae broken or reduced slightly; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were dropped (P<0.01), while the level of GSH increased (P<0.05); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01). In comparison with the acupuncture + agonist group, in the acupuncture group, the neurological deficit score increased (P<0.05), the percentage of cerebral infarction volume decreased (P<0.05), the pathological brain tissue damage was alleviated, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was normal in tendency; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were reduced (P<0.05), while the level of GSH rose (P<0.01); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao acupuncture can alleviate neurological damage in CIRI rats, which is obtained probably by inhibiting ferroptosis through p53/SLC7A11/GPX4 pathway.
Animals
;
Reperfusion Injury/metabolism*
;
Male
;
Acupuncture Therapy
;
Rats
;
Tumor Suppressor Protein p53/genetics*
;
Brain Ischemia/metabolism*
;
Rats, Wistar
;
Signal Transduction
;
Humans
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Disease Models, Animal
;
Acupuncture Points
;
Amino Acid Transport System y+/genetics*
7.Mechanistic insights into the GEF activity of the human MON1A/CCZ1/C18orf8 complex.
Yubin TANG ; Yaoyao HAN ; Zhenpeng GUO ; Ying LI ; Xinyu GONG ; Yuchao ZHANG ; Haobo LIU ; Xindi ZHOU ; Daichao XU ; Yixiao ZHANG ; Lifeng PAN
Protein & Cell 2025;16(8):739-744
8.Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics.
Qiuping ZHANG ; Qiuju HUANG ; Zhiping CHENG ; Wei XUE ; Shoushi LIU ; Yunnuo LIAO ; Xiaolan LI ; Xin CHEN ; Yaoyao HAN ; Dan ZHU ; Zhiheng SU ; Xin YANG ; Zhuo LUO ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):64-76
Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed through Hoechst staining and Western blotting assays. Proteomics technology was employed to identify key molecules and significant signaling pathways modulated by XAP in PCa cells. To further validate potential key genes and important pathways, a series of assays were conducted, including acridine orange (AO) staining, transmission electron microscopy, and immunofluorescence assays. The molecular mechanism of XAP against PCa in vivo was examined using a PC3 xenograft mouse model. Results demonstrated that XAP significantly inhibited cell proliferation in multiple PCa cell lines. In C4-2 and prostate cancer cell line-3 (PC3) cells, XAP induced cellular apoptosis, evidenced by reduced B-cell lymphoma 2 (Bcl-2) levels and elevated Bcl-2-associated X (Bax) levels. Proteomic, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) investigations revealed a strong correlation between forkhead box O3a (FoxO3a) autophagic degradation and the anti-PCa action of XAP. XAP hindered autophagy by reducing the expression levels of autophagy-related protein 5 (Atg5)/autophagy-related protein 12 (Atg12) and enhancing FoxO3a expression and nuclear translocation. Furthermore, XAP exhibited potent anti-PCa action in PC3 xenograft mice and triggered FoxO3a nuclear translocation in tumor tissue. These findings suggest that XAP induces PCa apoptosis via inhibition of FoxO3a autophagic degradation, potentially offering a novel perspective on XAP injection as an effective anticancer therapy for PCa.
Male
;
Humans
;
Prostatic Neoplasms/physiopathology*
;
Autophagy/drug effects*
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Proteomics
;
Mice
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Forkhead Box Protein O3/genetics*
;
Xenograft Model Antitumor Assays
;
Mice, Nude
;
Mice, Inbred BALB C
9.Wireless closed-loop deep brain stimulation using microelectrode array probes
JIA QIANLI ; LIU YAOYAO ; LV SHIYA ; WANG YIDING ; JIAO PEIYAO ; XU WEI ; XU ZHAOJIE ; WANG MIXIA ; CAI XINXIA
Journal of Zhejiang University. Science. B 2024;25(10):803-823
Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Advances in DBS microsystems based on implantable microelectrode array(MEA)probes have opened up new opportunities for closed-loop DBS(CL-DBS)in situ.This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems,key challenges,including excessive wired communication,need to be urgently resolved.In this review,we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field.This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
10.Correlation study between brain damage and anxiety, depression, and cognitive impairment in patients with moderate to severe obstructive sleep apnea hypopnea syndrome using diffusional kurtosis imaging
Yaoyao ZHAI ; Xiaoxia LIU ; Chan MENG ; Shuhua LI ; Dahai WU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2024;59(5):472-479
Objective:To explore the brain white matter damage in patients with moderate to severe obstructive sleep apnea hypopnea syndrome(OSAHS) using diffusional kurtosis imaging(DKI), and to analyze its relationship with anxiety, depression and cognitive impairment in patients.Methods:This was a retrospective case-control study. Fifty confirmed cases (47 males and 3 females) of moderate to severe OSAHS diagnosed by polysomnography(PSG) from November 2017 to December 2022 were selected as OSAHS group(age range from 22 to 65 years old, with median age of 40 years old), and 32 healthy controls(27 males and 5 females) of non-OSAHS diagnosed by PSG were selected as control group(age range from 19 to 56 years old, with median age of 34 years old). DKI scanning, Beck Anxiety Inventory(BAI), Beck Depression Inventory-Ⅱ(BDI-Ⅱ), and Montreal cognitive assessment(MoCA) scores were performed in all subjects. Differences in kurtosis fractional anisotropy(KFA) of various brain regions were compared between the two groups to identify differential brain regions. Correlations were analyzed between KFA reduction and anxiety, depression, and cognitive impairment in OSAHS patients. To study the correlation between brain injury and anxiety, depressive mood, and cognitive dysfunction, statistical methods such as non-parametric tests for two independent samples, chi-square tests, and partial correlation analysis, were used to analyze the evaluation indicators of the two groups.Results:The KFA values in right external capsule, left anterior corona radiata, right anterior corona radiata, left posterior corona radiata, right posterior corona radiata, left superior corona radiata, right superior corona radiata, left superior longitudinal fasciculus, right superior longitudinal fasciculus, genu of corpus callosum, splenium of corpus callosum, body of corpus callosum, posterior cingulate gyrus of moderate to severe OSAHS group were all lower than those in the control group( t=-2.247, -3.028, -3.955, -4.871, -2.632, -2.594, -2.121, -2.167, -3.129, -2.015, -2.317, -2.313, -2.152, P<0.05). For the moderate to severe OSAHS group, the correlation between AHI and KFA values of right posterior corona radiata, right superior corona radiata, left anterior corona radiata, left posterior corona radiata, left superior corona radiata, left superior longitudinal fasciculus, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum were all negative( r=-0.378, -0.307, -0.337, -0.343, -0.341, -0.613, -0.390, -0.384, -0.396, P<0.05). The correlation between LSO 2 and KFA values of right anterior corona radiata, right posterior corona radiata, right superior corona radiata, right superior longitudinal fasciculus, left anterior corona radiata, left posterior corona radiata, left superior corona radiata, left superior longitudinal fasciculus, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum, posterior cingulate gyrus were all positive( r=0.330, 0.338, 0.425, 0.312, 0.433, 0.358, 0.410, 0.459, 0.473, 0.659, 0.489, 0.356, P<0.05). The correlation between BAI scores and KFA values of right external capsule, right anterior corona radiata, left posterior corona radiata, left superior corona radiata, body of corpus callosum, splenium of corpus callosum were all negative( r=-0.306, -0.372, -0.296, -0.346, -0.318, -0.386, P<0.05). The correlation between BDI-Ⅱ scores and KFA values of right superior corona radiata, right superior longitudinal fasciculus, left anterior corona radiata, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum were all negative( r=-0.334, -0.289, -0.309, -0.310, -0.503, -0.469, P<0.05). The correlation between MoCA scores and KFA values of right posterior corona radiata, right superior longitudinal fasciculus, left anterior corona radiata, left superior corona radiata, left superior longitudinal fasciculus, genu of corpus callosum, body of corpus callosum, splenium of corpus callosum were all positive( r=0.368, 0.431, 0.324, 0.410, 0.469, 0.384, 0.369, 0.309, P<0.05). Conclusions:With the aggravation of OSAHS, the damage to some brain regions becomes more pronounced in moderate to severe OSAHS patients. These damage brain functional areas are closely related to the anxiety, depression, and cognitive impairment of patients.


Result Analysis
Print
Save
E-mail