1.Validating Multicenter Cohort Circular RNA Model for Early Screening and Diagnosis of Gestational Diabetes Mellitus
Shuo MA ; Yaya CHEN ; Zhexi GU ; Jiwei WANG ; Fengfeng ZHAO ; Yuming YAO ; Gulinaizhaer ABUDUSHALAMU ; Shijie CAI ; Xiaobo FAN ; Miao MIAO ; Xun GAO ; Chen ZHANG ; Guoqiu WU
Diabetes & Metabolism Journal 2025;49(3):462-474
Background:
Gestational diabetes mellitus (GDM) is a metabolic disorder posing significant risks to maternal and infant health, with a lack of effective early screening markers. Therefore, identifying early screening biomarkers for GDM with higher sensitivity and specificity is urgently needed.
Methods:
High-throughput sequencing was employed to screen for key circular RNAs (circRNAs), which were then evaluated using reverse transcription quantitative polymerase chain reaction. Logistic regression analysis was conducted to examine the relationship between clinical characteristics, circRNA expression, and adverse pregnancy outcomes. The diagnostic accuracy of circRNAs for early and mid-pregnancy GDM was assessed using receiver operating characteristic curves. Pearson correlation analysis was utilized to explore the relationship between circRNA levels and oral glucose tolerance test results. A predictive model for early GDM was established using logistic regression.
Results:
Significant alterations in circRNA expression profiles were detected in GDM patients, with hsa_circ_0031560 and hsa_ circ_0000793 notably upregulated during the first and second trimesters. These circRNAs were associated with adverse pregnancy outcomes and effectively differentiated GDM patients, with second trimester cohorts achieving an area under the curve (AUC) of 0.836. In first trimester cohorts, these circRNAs identified potential GDM patients with AUCs of 0.832 and 0.765, respectively. The early GDM prediction model achieved an AUC of 0.904, validated in two independent cohorts.
Conclusion
Hsa_circ_0031560, hsa_circ_0000793, and the developed model serve as biomarkers for early prediction or midterm diagnosis of GDM, offering clinical tools for early GDM screening.
2.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
3.Application of Thermal Tomography in Breast Cancer Screening
Kankan ZHAO ; Bo CHEN ; Wenliang LU ; Yao CHENG ; Hongmei ZHENG ; Xinhong WU ; Shengrong SUN ; Ziming HUANG
Cancer Research on Prevention and Treatment 2025;52(5):388-392
Objective To evaluate the effectiveness of thermal tomography in breast cancer (BC) screening. Methods We conducted a general population-based BC screening in three regions of Hubei Province (Xiantao, Hongan, and Yangxin Districts). Participants underwent a questionnaire-based interview for baseline data collection. They then received a physical examination, thermal tomography, and ultrasound from doctors and technicians. We compared the efficacies, including sensitivity, specificity, and false-positive rates, of ultrasound and thermal tomography in BC screening. Results A total of 59 712 eligible women were included in this screening program. The BI-RADS 1, 2, 3, 4, and 5 accordance rates between the two screening methods were
4.Validating Multicenter Cohort Circular RNA Model for Early Screening and Diagnosis of Gestational Diabetes Mellitus
Shuo MA ; Yaya CHEN ; Zhexi GU ; Jiwei WANG ; Fengfeng ZHAO ; Yuming YAO ; Gulinaizhaer ABUDUSHALAMU ; Shijie CAI ; Xiaobo FAN ; Miao MIAO ; Xun GAO ; Chen ZHANG ; Guoqiu WU
Diabetes & Metabolism Journal 2025;49(3):462-474
Background:
Gestational diabetes mellitus (GDM) is a metabolic disorder posing significant risks to maternal and infant health, with a lack of effective early screening markers. Therefore, identifying early screening biomarkers for GDM with higher sensitivity and specificity is urgently needed.
Methods:
High-throughput sequencing was employed to screen for key circular RNAs (circRNAs), which were then evaluated using reverse transcription quantitative polymerase chain reaction. Logistic regression analysis was conducted to examine the relationship between clinical characteristics, circRNA expression, and adverse pregnancy outcomes. The diagnostic accuracy of circRNAs for early and mid-pregnancy GDM was assessed using receiver operating characteristic curves. Pearson correlation analysis was utilized to explore the relationship between circRNA levels and oral glucose tolerance test results. A predictive model for early GDM was established using logistic regression.
Results:
Significant alterations in circRNA expression profiles were detected in GDM patients, with hsa_circ_0031560 and hsa_ circ_0000793 notably upregulated during the first and second trimesters. These circRNAs were associated with adverse pregnancy outcomes and effectively differentiated GDM patients, with second trimester cohorts achieving an area under the curve (AUC) of 0.836. In first trimester cohorts, these circRNAs identified potential GDM patients with AUCs of 0.832 and 0.765, respectively. The early GDM prediction model achieved an AUC of 0.904, validated in two independent cohorts.
Conclusion
Hsa_circ_0031560, hsa_circ_0000793, and the developed model serve as biomarkers for early prediction or midterm diagnosis of GDM, offering clinical tools for early GDM screening.
5.Validating Multicenter Cohort Circular RNA Model for Early Screening and Diagnosis of Gestational Diabetes Mellitus
Shuo MA ; Yaya CHEN ; Zhexi GU ; Jiwei WANG ; Fengfeng ZHAO ; Yuming YAO ; Gulinaizhaer ABUDUSHALAMU ; Shijie CAI ; Xiaobo FAN ; Miao MIAO ; Xun GAO ; Chen ZHANG ; Guoqiu WU
Diabetes & Metabolism Journal 2025;49(3):462-474
Background:
Gestational diabetes mellitus (GDM) is a metabolic disorder posing significant risks to maternal and infant health, with a lack of effective early screening markers. Therefore, identifying early screening biomarkers for GDM with higher sensitivity and specificity is urgently needed.
Methods:
High-throughput sequencing was employed to screen for key circular RNAs (circRNAs), which were then evaluated using reverse transcription quantitative polymerase chain reaction. Logistic regression analysis was conducted to examine the relationship between clinical characteristics, circRNA expression, and adverse pregnancy outcomes. The diagnostic accuracy of circRNAs for early and mid-pregnancy GDM was assessed using receiver operating characteristic curves. Pearson correlation analysis was utilized to explore the relationship between circRNA levels and oral glucose tolerance test results. A predictive model for early GDM was established using logistic regression.
Results:
Significant alterations in circRNA expression profiles were detected in GDM patients, with hsa_circ_0031560 and hsa_ circ_0000793 notably upregulated during the first and second trimesters. These circRNAs were associated with adverse pregnancy outcomes and effectively differentiated GDM patients, with second trimester cohorts achieving an area under the curve (AUC) of 0.836. In first trimester cohorts, these circRNAs identified potential GDM patients with AUCs of 0.832 and 0.765, respectively. The early GDM prediction model achieved an AUC of 0.904, validated in two independent cohorts.
Conclusion
Hsa_circ_0031560, hsa_circ_0000793, and the developed model serve as biomarkers for early prediction or midterm diagnosis of GDM, offering clinical tools for early GDM screening.
6.Validating Multicenter Cohort Circular RNA Model for Early Screening and Diagnosis of Gestational Diabetes Mellitus
Shuo MA ; Yaya CHEN ; Zhexi GU ; Jiwei WANG ; Fengfeng ZHAO ; Yuming YAO ; Gulinaizhaer ABUDUSHALAMU ; Shijie CAI ; Xiaobo FAN ; Miao MIAO ; Xun GAO ; Chen ZHANG ; Guoqiu WU
Diabetes & Metabolism Journal 2025;49(3):462-474
Background:
Gestational diabetes mellitus (GDM) is a metabolic disorder posing significant risks to maternal and infant health, with a lack of effective early screening markers. Therefore, identifying early screening biomarkers for GDM with higher sensitivity and specificity is urgently needed.
Methods:
High-throughput sequencing was employed to screen for key circular RNAs (circRNAs), which were then evaluated using reverse transcription quantitative polymerase chain reaction. Logistic regression analysis was conducted to examine the relationship between clinical characteristics, circRNA expression, and adverse pregnancy outcomes. The diagnostic accuracy of circRNAs for early and mid-pregnancy GDM was assessed using receiver operating characteristic curves. Pearson correlation analysis was utilized to explore the relationship between circRNA levels and oral glucose tolerance test results. A predictive model for early GDM was established using logistic regression.
Results:
Significant alterations in circRNA expression profiles were detected in GDM patients, with hsa_circ_0031560 and hsa_ circ_0000793 notably upregulated during the first and second trimesters. These circRNAs were associated with adverse pregnancy outcomes and effectively differentiated GDM patients, with second trimester cohorts achieving an area under the curve (AUC) of 0.836. In first trimester cohorts, these circRNAs identified potential GDM patients with AUCs of 0.832 and 0.765, respectively. The early GDM prediction model achieved an AUC of 0.904, validated in two independent cohorts.
Conclusion
Hsa_circ_0031560, hsa_circ_0000793, and the developed model serve as biomarkers for early prediction or midterm diagnosis of GDM, offering clinical tools for early GDM screening.
7.Study on The Detection Method of Fat Infiltration in Muscle Tissue Based on Phase Angle Electrical Impedance Tomography
Wu-Guang XIAO ; Xiao-Peng ZHU ; Hui FENG ; Bo SUN ; Tong ZHAO ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(10):2663-2676
ObjectiveFat infiltration has been shown to be closely related to muscle mass loss and a variety of muscle diseases. This study proposes a method based on phase-angle electrical impedance tomography (ΦEIT) to visualize the electrical characteristic response caused by muscle fat infiltration, aiming to provide a new technical means for early non-invasive detection of muscle mass deterioration. MethodsThis study was divided into two parts. First, a laboratory pork model was constructed to simulate different degrees of fat infiltration by injecting1 ml or 2 ml of emulsified fat solution into different muscle compartments, and the phase angle images were reconstructed using ΦEIT. Second, a human experiment was conducted to recruit healthy subjects (n=8) from two age groups (20-25 years old and 26-30 years old). The fat content percentage ηfat of the left and right legs was measured by bioelectrical impedance analysis (BIA), and the phase angle images of the left and right calves were reconstructed using ΦEIT. The relationship between the global average phase angle ΦM and the spatial average phase angle ΦMi of each muscle compartment and fat infiltration was further analyzed. ResultsIn the laboratory pork model, the grayscale value of the image increased with the increase of ηfat and ΦM showed a downward trend. The results of human experiments showed that at the same fat content percentage, the ΦM of the 26-30-year-old group was about 20%-35% lower than that of the 20-25-year-old group. The fat content percentage was significantly negatively correlated with ΦM. In addition, the M2 (soleus) compartment was most sensitive to fat infiltration, and the spatial average phase angles of the M2 (soleus), M3 (tibialis posterior and flexor digitorum longus), and M4 (tibialis anterior, extensor digitorum longus, and peroneus longus) compartments all showed significant inter-group differences. ConclusionΦEIT imaging can effectively distinguish different degrees of fat infiltration, especially in deep, small or specially located muscles, showing high sensitivity, demonstrating the potential application of this method in local muscle mass monitoring and early non-invasive diagnosis.
8.Large models in medical imaging: Advances and prospects.
Mengjie FANG ; Zipei WANG ; Sitian PAN ; Xin FENG ; Yunpeng ZHAO ; Dongzhi HOU ; Ling WU ; Xuebin XIE ; Xu-Yao ZHANG ; Jie TIAN ; Di DONG
Chinese Medical Journal 2025;138(14):1647-1664
Recent advances in large models demonstrate significant prospects for transforming the field of medical imaging. These models, including large language models, large visual models, and multimodal large models, offer unprecedented capabilities in processing and interpreting complex medical data across various imaging modalities. By leveraging self-supervised pretraining on vast unlabeled datasets, cross-modal representation learning, and domain-specific medical knowledge adaptation through fine-tuning, large models can achieve higher diagnostic accuracy and more efficient workflows for key clinical tasks. This review summarizes the concepts, methods, and progress of large models in medical imaging, highlighting their potential in precision medicine. The article first outlines the integration of multimodal data under large model technologies, approaches for training large models with medical datasets, and the need for robust evaluation metrics. It then explores how large models can revolutionize applications in critical tasks such as image segmentation, disease diagnosis, personalized treatment strategies, and real-time interactive systems, thus pushing the boundaries of traditional imaging analysis. Despite their potential, the practical implementation of large models in medical imaging faces notable challenges, including the scarcity of high-quality medical data, the need for optimized perception of imaging phenotypes, safety considerations, and seamless integration with existing clinical workflows and equipment. As research progresses, the development of more efficient, interpretable, and generalizable models will be critical to ensuring their reliable deployment across diverse clinical environments. This review aims to provide insights into the current state of the field and provide directions for future research to facilitate the broader adoption of large models in clinical practice.
Humans
;
Diagnostic Imaging/methods*
;
Precision Medicine/methods*
;
Image Processing, Computer-Assisted/methods*
9.Single-incision laparoscopic totally extraperitoneal retrieval of retroperitoneal vas deferens in vasovasostomy for obstructive azoospermia patients postchildhood bilateral herniorrhaphy.
Chen-Wang ZHANG ; Wei-Dong WU ; Jun-Wei XU ; Jing-Peng ZHAO ; Er-Lei ZHI ; Yu-Hua HUANG ; Chen-Cheng YAO ; Fu-Jun ZHAO ; Zheng LI ; Peng LI
Asian Journal of Andrology 2025;27(1):137-138
10.A Prospective Cohort Study on Soy Product Intake and the Risk of Lung Cancer Based on Shanghai Suburban Adult Cohort and Biobank.
Shiyun DING ; Wenhui WU ; Jianing MAO ; Jingrao LI ; Ji ZHENG ; Ye YAO ; Genming ZHAO ; Yiling WU ; Ruoxin ZHANG
Chinese Journal of Lung Cancer 2025;28(4):291-303
BACKGROUND:
Lung cancer is one of the malignant cancers with the highest incidence rate, and it is important to identify the factors contributing to lung cancer carcinogenesis for prevention. Lifestyle and genetic factors play important roles in cancer development, however the impact of dietary factors, such as soy product intake, on lung cancer risk remains inadequately understood. This study aims to explore the associations between soy product intake, genetic risk, and lung cancer incidence, and validate the consistent effects of soy product intake in European populations, thereby providing new insights for lung cancer prevention.
METHODS:
Utilizing the Shanghai Suburban Adult Cohort and Biobank (SSACB) (n=66,311), Cox proportional hazards model was adopted to assess the association between soy product intake and lung cancer incidents, followed by subgroup analyses stratified by gender, smoking status, and pathological types of lung cancer. The UK Biobank (UKB) was used for validation of the effect of soy product intake on lung cancer. To investigate the association between genetic factors and lung cancer, in addition to previously reported loci, we incorporated newly identified loci from two independent studies in Southeast China: a nested case-control population from the SSACB cohort (433 cases/650 controls) and a case-control study from the Shanghai Cancer Center-Taizhou cohort (1359 cases/1359 controls). Meta-analysis and Linkage disequilibrium clumping (LD clumping) of the association results identified 23 loci for polygenic risk score (PRS) construction. Subsequently, conditional Logistic regression model was used to assess the association between genetic risk and lung cancer.
RESULTS:
In SSACB cohort, after adjusting for age, gender, smoking, chronic bronchitis, body mass index (BMI), vegetable intake and red meat intake, sufficient soy product intake was significantly associated with a reduced risk of lung cancer [hazard ratio (HR)=0.60, 95%CI: 0.47-0.77, Padj=6.69E-05], an effect that was consistent in males and females, smokers and non-smokers. In UKB, although the association did not reach statistical significance, a protective trend against lung cancer was also observed (HR=0.76, 95%CI: 0.55-1.06, Padj=0.10). In the nested case-control population within SSACB, a PRS score generated in the Chinese population was significantly correlated with lung cancer risk. After adjustment of age, gender, smoking, chronic bronchitis, and soy product intake, the high-PRS group had a 1.88 times higher risk of lung cancer compared to the low-PRS group (Padj=1.84E-03).
CONCLUSIONS
The prospective cohort study found that adequate intake of soy products was significantly associated with a reduced risk of lung cancer, while a high PRS is a risk factor for lung cancer development. Integrating soy product intake and PRS into traditional epidemiological risk factor prediction will guide personalized lung cancer prevention and high-risk population stratification.
Humans
;
Lung Neoplasms/etiology*
;
Male
;
Female
;
China/epidemiology*
;
Middle Aged
;
Adult
;
Aged
;
Prospective Studies
;
Biological Specimen Banks
;
Risk Factors
;
Case-Control Studies
;
Cohort Studies

Result Analysis
Print
Save
E-mail