1.Interpretation of 2024 ESC guidelines for the management of elevated blood pressure and hypertension
Yu CHENG ; Yiheng ZHOU ; Yao LÜ ; ; Dongze LI ; Lidi LIU ; Peng ZHANG ; Rong YANG ; Yu JIA ; Rui ZENG ; Zhi WAN ; Xiaoyang LIAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):31-40
The European Society of Cardiology (ESC) released the "2024 ESC guidelines for the management of elevated blood pressure and hypertension" on August 30, 2024. This guideline updates the 2018 "Guidelines for the management of arterial hypertension." One notable update is the introduction of the concept of "elevated blood pressure" (120-139/70-89 mm Hg). Additionally, a new systolic blood pressure target range of 120-129 mm Hg has been proposed for most patients receiving antihypertensive treatment. The guideline also includes numerous additions or revisions in areas such as non-pharmacological interventions and device-based treatments for hypertension. This article interprets the guideline's recommendations on definition and classification of elevated blood pressure and hypertension, and cardiovascular disease risk assessment, diagnosing hypertension and investigating underlying causes, preventing and treating elevated blood pressure and hypertension. We provide a comparison interpretation with the 2018 "Guidelines for the management of arterial hypertension" and the "2017 ACC/AHA guideline on the prevention, detection, evaluation, and management of high blood pressure in adults."
2.Color Space Method Combined with Chemometrics to Determine Processing Degree of Angelicae Sinensis Radix Carbonisata
Liuying QIN ; Yao HUANG ; Lifan GAN ; Yuanjun LIU ; Congyou DENG ; Dongmei SUN ; Lijin LIANG ; Lin ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):201-210
ObjectiveTo study the changing law of appearance color and physicochemical properties of Angelicae Sinensis Radix Carbonisata(ASRC) during the processing by color space method combined with statistical analysis, so as to provide reference for determining the processing endpoint and evaluating the quality of the decoction pieces. MethodsTaking processing time(4, 8, 12, 16 min) and temperature(180, 200, 220, 240 ℃) as factors, ASRC decoction pieces with different processing degrees were prepared in a completely randomized design. Then, the brightness value(L*), red-green value(a*), yellow-blue value(b*), and total chromaticity value (E*ab) of the decoction pieces were determined by spectrophotometer, the color difference value(ΔE) was calculated, and the data of colorimetric values were analyzed by discriminant analysis. At the same time, the pH, charcoal adsorption, and contents of tannins, 5-hydroxymethylfurfural(5-HMF), tryptophan, chlorogenic acid, ferulic acid, senkyunolide I, senkyunolide H and ligustilide of ASRC with different processing degrees were determined by pH meter, ultraviolet and visible spectrophotometry and ultra-high performance liquid chromatography(UPLC). Principal component analysis(PCA) was used to analyze the data of physicochemical indexes, after determining the processing technology of ASRC, the canonical discriminant function was established to distinguish the decoction pieces with different processing degrees, and leave-one-out cross validation was conducted. Finally, Pearson correlation analysis was used to explore the correlation between various physicochemical indexes and chromaticity values. ResultsWith the prolongation of the processing time, L*, a*, b* and E*ab all showed a decreasing trend, and the established discriminant model based on color parameters was able to distinguish ASRC with different processing degrees. The pH showed an increasing trend with the prolongation of processing time, and the charcoal adsorption, and the contents of tannins, 5-HMF, and tryptophan all showed an increasing and then decreasing trend. Among them, the charcoal adsorption, contents of tannin and 5-HMF reached their maximum values successively after processing for 8-12 min. While the contents of chlorogenic acid, ferulic acid, senkyunolide I, senkyunolide H and ligustilide decreased with the increase of processing time, with a decrease of 60%-80% at 8 min of processing. Therefore, the optimal processing time should be determined to be 8-12 min. PCA could clearly distinguish ASRC with different processing degrees, while temperature had no significant effect on the processing degree. The 12 batches of process validation results(10 min, 180-240 ℃) showed that except for 3 batches identified as class Ⅱ light charcoal, all other batches were identified as class Ⅲ standard charcoal, and the chromaticity values of each batch of ASRC were within the reference range of class Ⅱ-Ⅲ sample chromaticity values. The correlation analysis showed that the chromaticity values were negatively correlated with pH and charcoal adsorption, and positively correlated with contents of tryptophan, chlorogenic acid, ferulic acid, senkyunolide I, senkyunolide H, and ligustilide. And both pH and charcoal adsorption were negatively correlated with the contents of the above components, but the charcoal adsorption was positively correlated with the content of 5-HMF. ConclusionThe chromaticity values and the contents of various physicochemical indicators of ASRC undergo significant changes with the prolongation of processing time, and there is a general correlation between chromaticity values and various physicochemical indicators. Based on the changes in color and physicochemical indicators, the optimal processing time for ASRC is determined to be 8-12 min. This study reveals the dynamic changes of the relevant indexes in the processing of ASRC, which can provide a reference for the discrimination of the processing degree and the quantitative study of the processing endpoint.
3.Research on a COPD Diagnosis Method Based on Electrical Impedance Tomography Imaging
Fang LI ; Bai CHEN ; Yang WU ; Kai LIU ; Tong ZHOU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(7):1866-1877
ObjectiveThis paper proposes a novel real-time bedside pulmonary ventilation monitoring method for the diagnosis of chronic obstructive pulmonary disease (COPD), based on electrical impedance tomography (EIT). Four indicators—center of ventilation (CoV), global inhomogeneity index (GI), regional ventilation delay inhomogeneity (RVDI), and the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC)—are calculated to enable the spatiotemporal assessment of COPD. MethodsA simulation of the respiratory cycles of COPD patients was first conducted, revealing significant differences in certain indicators compared to healthy individuals. The effectiveness of these indicators was then validated through experiments. A total of 93 subjects underwent multiple pulmonary function tests (PFTs) alongside simultaneous EIT measurements. Ventilation heterogeneity under different breathing patterns—including forced exhalation, forced inhalation, and quiet tidal breathing—was compared. EIT images and related indicators were analyzed to distinguish healthy individuals across different age groups from COPD patients. ResultsSimulation results demonstrated significant differences in CoV, GI, FEV1/FVC, and RVDI between COPD patients and healthy individuals. Experimental findings indicated that, in terms of spatial heterogeneity, the GI values of COPD patients were significantly higher than those of the other two groups, while no significant differences were observed among healthy individuals. Regarding temporal heterogeneity, COPD patients exhibited significantly higher RVDI values than the other groups during both quiet breathing and forced inhalation. Moreover, during forced exhalation, the distribution of FEV1/FVC values further highlighted the temporal delay heterogeneity of regional lung function in COPD patients, distinguishing them from healthy individuals of various ages. ConclusionEIT technology effectively reveals the spatiotemporal heterogeneity of regional lung function, which holds great promise for the diagnosis and management of COPD.
4.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
5.Systemic comparison of molecular characteristics in different skin fibroblast senescent models.
Xiaokai FANG ; Shan ZHANG ; Mingyang WU ; Yang LUO ; Xingyu CHEN ; Yuan ZHOU ; Yu ZHANG ; Xiaochun LIU ; Xu YAO
Chinese Medical Journal 2025;138(17):2180-2191
BACKGROUND:
Senescent human skin primary fibroblast (FB) models have been established for studying aging-related, proliferative, and inflammatory skin diseases. The aim of this study was to compare the transcriptome characteristics of human primary dermal FBs from children and the elderly with four senescence models.
METHODS:
Human skin primary FBs were obtained from healthy children (FB-C) and elderly donors (FB-E). Senescence models were generated by ultraviolet B irradiation (FB-UVB), D-galactose stimulation (FB-D-gal), atazanavir treatment (FB-ATV), and replication exhaustion induction (FB-P30). Flow cytometry, immunofluorescence staining, real-time quantitative polymerase chain reaction, co-culturing with immune cells, and bulk RNA sequencing were used for systematic comparisons of the models.
RESULTS:
In comparison with FB-C, FB-E showed elevated expression of senescence-related genes related to the skin barrier and extracellular matrix, proinflammatory factors, chemokines, oxidative stress, and complement factors. In comparison with FB-E, FB-UVB and FB-ATV showed higher levels of senescence and expression of the genes related to the senescence-associated secretory phenotype (SASP), and their shaped immune microenvironment highly facilitated the activation of downstream immune cells, including T cells, macrophages, and natural killer cells. FB-P30 was most similar to FB-E in terms of general transcriptome features, such as FB migration and proliferation, and aging-related characteristics. FB-D-gal showed the lowest expression levels of senescence-related genes. In comparisons with the single-cell RNA sequencing results, FB-E showed almost complete simulation of the transcriptional spectrum of FBs in elderly patients with atopic dermatitis, followed by FB-P30 and FB-UVB. FB-E and FB-P30 showed higher similarity with the FBs in keloids.
CONCLUSIONS
Each senescent FB model exhibited different characteristics. In addition to showing upregulated expression of natural senescence features, FB-UVB and FB-ATV showed high expression levels of senescence-related genes, including those involved in the SASP, and FB-P30 showed the greatest similarity with FB-E. However, D-galactose-stimulated FBs did not clearly present aging characteristics.
Humans
;
Fibroblasts/drug effects*
;
Cellular Senescence/physiology*
;
Skin/metabolism*
;
Child
;
Transcriptome/genetics*
;
Aged
;
Ultraviolet Rays
;
Cells, Cultured
;
Galactose/pharmacology*
6.N-glycosylation Modifications of Immunoglobulins G in Systemic Lupus Erythematosus
Yao-Zhou LIU ; Zheng BIAN ; Chun-Cui HUANG ; Yan LI
Progress in Biochemistry and Biophysics 2025;52(9):2205-2216
Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology, primarily characterized by systemic inflammation and hyperactivation of both B and T lymphocytes. Key immunological features include increased consumption of complement components, sustained overproduction of type I interferons (IFN-I), and persistent production of a broad spectrum of autoantibodies, such as anti-dsDNA antibodies. However, the use of autoantibodies as biomarkers for the early detection of SLE is associated with a high false-positive rate, suggesting that antibody characteristics evolve during disease progression.N-glycosylation is a critical post-translational modification of antibodies that significantly influences their structure and receptor-binding properties, thereby modulating biological activities and functions. In particular, glycosylation patterns affect the antibody’s affinity for Fc gamma receptors (FcγRs), subsequently regulating various antibody-mediated immune responses. Numerous studies have investigated the impact of individual monosaccharides—such as sialic acid, fucose, and N-acetylglucosamine, which constitute N-glycans—on the immunological functions of antibodies. This review systematically summarizes the aberrant immunoglobulin G (IgG) N-glycosylation patterns observed in SLE patients, with a focus on correlations between disease progression or complications and quantitative alterations in individual glycan components. We first review how different types of N-glycosylation modifications affect the biological activity and functional properties of IgG, particularly regarding the effects of specific monosaccharides—such as sialic acid, fucose, and galactose—on FcγR binding affinity and the resulting downstream immune functions. We then summarize the differential expression of IgGN-glycans and glycosyltransferase genes between SLE patients and healthy controls, and outline the associations between glycosylation changes and SLE-related pathological responses. In response to the inconsistencies and limitations in current research, we propose potential explanations from the perspectives of study methodologies, participant characteristics, and variations in N-glycan structures, aiming to provide a constructive reference for future studies. Given the close relationship between antibody glycosylation and SLE, this review highlights the potential of IgG N-glycosylation patterns as promising biomarkers for early diagnosis and disease monitoring. In terms of therapy, we discuss how IgG glycosylation can enhance the efficacy of intravenous immunoglobulin (IVIg) treatment and introduce emerging therapeutic strategies that aim to modulate endogenous IgG N-glycans as a novel glycan-based approach for SLE management. In summary, N-glycans are essential structural components of antibodies that regulate immune responses by modulating antibody-receptor interactions. Aberrant glycosylation is closely associated with the pathogenesis of autoimmune diseases, including SLE. However, due to the structural diversity of N-glycans and the complexity of glycosylation processes, the precise roles of IgGN-glycosylation in SLE pathophysiology remain incompletely understood. Moreover, therapeutic strategies targeting IgG glycosylation are still in early development and have not yet reached clinical application. Continued progress in glycan analysis technologies and other biological tools, along with interdisciplinary collaboration, will be essential for advancing this field.
7.Sputum metabolomics study in patients with occupational coal workers′ pneumoconiosis
Yiming ZHANG ; Qiufang QU ; Qingnan ZHOU ; Shuhan GUO ; Le LIU ; Yuke WANG ; Zhenlin HE ; Sanqiao YAO
China Occupational Medicine 2025;52(3):241-248
Objective To investigate the sputum metabolic profiles of patients with occupational coal workers' pneumoconiosis (CWP) by an untargeted metabolomics method, and to identify relevant differential metabolic pathways and potential biomarkers. Methods A total of 12 male patients with stage Ⅰ CWP were selected as the CWP group, and 16 healthy male individuals were selected as the control group, using a judgmental sampling method. Sputum metabolites of individuals in both groups were detected to perform non-targeted metabolomic analysis using the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Differential metabolites (DMs) and their pathways were screened using principal component analysis, partial least squares discriminant analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Potential biomarkers were analyzed and identified via the receiver operating characteristic curve (ROC). Results There were apparent metabolic alterations observed in sputum of CWP patients compared with healthy controls. In the positive ion mode, a total of 42 DMs were identified in sputum from CWP patients, including 19 downregulated and 23 upregulated metabolites. In the negative ion mode, a total of 25 DMs were identified in sputum from CWP patients, including 16 downregulated and 9 upregulated metabolites. KEGG enrichment analysis of sputum from CWP patients showed that seven DMs pathways were enriched in ABC transporters, histidine metabolism, phenylalanine metabolism, arachidonic acid metabolism, linoleic acid metabolism, purine metabolism, and oxidative phosphorylation, involving 26 DMs. ROC analysis indicated that 16(R)-hydroxyarachidonic acid, pyrophosphate, and 2-hydroxyphenylacetate of these 26 DMs may serve as potential biomarkers for CWP. Conclusion Sputum metabolomic profiles were altered in CWP patients compared with healthy controls. The potential biomarkers of CWP prevention and treatment are 16(R)-hydroxyarachidonic acid, pyrophosphate, and 2-hydroxyphenylacetate.
8.Clinical value of peripheral immune function status in the assessment of ‘Deficiency of Vital Qi’ in lung cancer metastasis
XU Fan1,2 ; TIAN Jianhui1,2 ; LIU Youjun1,2 ; CHENG Zhenyang1,2 ; QUE Zujun2 ; LUO Bin1 ; YANG Yun1 ; YAO Jialiang1 ; YAO Wang1 ; LU Xinyi1,2 ; LIU Yao1,2 ; ZHOU Yiyang1 ; WU Jianchun1 ; LUO Yingbin1 ; LI Minghua1 ; SHI Wenfei1 ; CUI Yajing1 ; SHANGGUAN Wenji3 ; LI Yan1
Chinese Journal of Cancer Biotherapy 2025;32(10):1065-1070
[摘 要] 目的:探索外周免疫功能状态与肺癌转移的关联,筛选可用于肺癌转移“正虚”评估的外周血免疫标志物。方法:回顾性分析2023年3月至2025年4月期间上海中医药大学附属市中医医院收治的肺癌患者治疗前的外周血免疫标志物,根据是否存在远处转移,将患者分为无转移组与转移组,比较两组间免疫细胞和细胞因子的表达差异。将单因素分析P < 0.05的外周血免疫指标纳入多因素二元Logistic回归模型,以识别肺癌转移的独立预测因素。结果:共纳入193例肺癌患者(无转移组101例,转移组92例),两组在性别、年龄、吸烟史、饮酒史、病理类型间的差异均无统计学意义(均P > 0.05)。单因素分析显示,无转移组与转移组间有多项免疫指标存在显著差异(均P < 0.05),包括:淋巴细胞计数,CD3+、CD4+、CD8+ T、CD19+ B细胞及CD3-CD16+56+ NK细胞绝对计数,Treg细胞、CD8+CD28+ Treg细胞、G-MDSC和CD3-CD16+CD56+dim NK细胞百分率,以及细胞因子IL-1β、IL-6和IL-10水平。将差异性指标行二元Logistic回归分析,提示外周血中Treg细胞和CD8+CD28+ Treg细胞百分率是肺癌发生远处转移的独立预测因素[OR = 1.193, 95% CI(1.047, 1.36), P < 0.01; OR = 0.978, 95% CI(0.957, 0.999), P < 0.05]。结论:外周血免疫功能紊乱是肺癌转移“正虚”的生物学基础,本研究以量化指标证实外周免疫功能状态与肺癌转移的相关性,为“正虚伏毒”和“肿瘤转移态”理论提供了实证。
9.Novel CD19 Fast-CAR-T cells vs. CD19 conventional CAR-T cells for the treatment of relapsed/refractory CD19-positive B-cell acute lymphoblastic leukemia.
Xu TAN ; Jishi WANG ; Shangjun CHEN ; Li LIU ; Yuhua LI ; Sanfang TU ; Hai YI ; Jian ZHOU ; Sanbin WANG ; Ligen LIU ; Jian GE ; Yongxian HU ; Xiaoqi WANG ; Lu WANG ; Guo CHEN ; Han YAO ; Cheng ZHANG ; Xi ZHANG
Chinese Medical Journal 2025;138(19):2491-2497
BACKGROUND:
Treatment with chimeric antigen receptor-T (CAR-T) cells has shown promising effectiveness in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), although the process of preparing for this therapy usually takes a long time. We have recently created CD19 Fast-CAR-T (F-CAR-T) cells, which can be produced within a single day. The objective of this study was to evaluate and contrast the effectiveness and safety of CD19 F-CAR-T cells with those of CD19 conventional CAR-T cells in the management of R/R B-ALL.
METHODS:
A multicenter, retrospective analysis of the clinical data of 44 patients with R/R B-ALL was conducted. Overall, 23 patients were administered with innovative CD19 F-CAR-T cells (F-CAR-T group), whereas 21 patients were given CD19 conventional CAR-T cells (C-CAR-T group). We compared the rates of complete remission (CR), minimal residual disease (MRD)-negative CR, leukemia-free survival (LFS), overall survival (OS), and the incidence of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) between the two groups.
RESULTS:
Compared with the C-CAR-T group, the F-CAR-T group had significantly higher CR and MRD-negative rates (95.7% and 91.3%, respectively; 71.4% and 66.7%, respectively; P = 0.036 and P = 0.044). No significant differences were observed in the 1-year or 2-year LFS or OS rates between the two groups: the 1-year and 2-year LFS for the F-CAR-T group vs.C-CAR-T group were 47.8% and 43.5% vs. 38.1% and 23.8% (P = 0.384 and P = 0.216), while the 1-year and 2-year OS rates were 65.2% and 56.5% vs. 52.4% and 47.6% (P = 0.395 and P = 0.540). Additionally, among CR patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) following CAR-T-cell therapy, there were no significant differences in the 1-year or 2-year LFS or OS rates: 57.1% and 50.0% vs. 47.8% and 34.8% (P = 0.506 and P = 0.356), 64.3% and 57.1% vs. 65.2% and 56.5% (P = 0.985 and P = 0.883), respectively. The incidence of CRS was greater in the F-CAR-T group (91.3%) than in the C-CAR-T group (66.7%) (P = 0.044). The incidence of ICANS was also greater in the F-CAR-T group (30.4%) than in the C-CAR-T group (9.5%) (P = 0.085), but no treatment-related deaths occurred in the two groups.
CONCLUSION
Compared with C-CAR-T-cell therapy, F-CAR-T-cell therapy has a superior remission rate but also leads to a tolerably increased incidence of CRS/ICANS. Further research is needed to explore the function of allo-HSCT as an intermediary therapy after CAR-T-cell therapy.
10.Research progress of PANoptosis in cancer.
Yi-Ling LUO ; Liu-Yan CHEN ; Yao-Bin WANG ; Su-Fang ZHOU
Acta Physiologica Sinica 2025;77(2):277-288
PANoptosis is a type of programmed cell death regulated by the PANoptosome with key features of pyroptosis, apoptosis and/or necroptosis. As the most complex programmed cell death, PANoptosis emphasizes the compensatory role among multiple programmed cell deaths, and can regulate malignant phenotypes such as proliferation, migration, and invasion of tumor cells through multiple signaling pathways, thus affecting malignant tumor progression. It has been found that PANoptosis plays a dual role in tumor progression and treatment. Therefore, it is clinically important to understand the molecular mechanisms by which PANoptosis affects tumorigenesis, development and progression. This paper reviews the molecular mechanisms of apoptosis, pyroptosis and necroptosis, and discusses the activation and regulation mechanisms of PANoptosis and PANoptosome as well as the research progress on the role of PANoptosis in tumors, aiming to provide new ideas for cancer treatment and prognostic assessment.
Humans
;
Neoplasms/physiopathology*
;
Pyroptosis/physiology*
;
Apoptosis/physiology*
;
Necroptosis/physiology*
;
Signal Transduction
;
Animals

Result Analysis
Print
Save
E-mail