1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Skin pharmacokinetics of inositol nicotinate in heparin sodium inositol nicotinate cream
Yaling CUI ; Qiong WU ; Liangyu MA ; Bei HU ; Dong YAO ; Zihua XU
Journal of Pharmaceutical Practice and Service 2025;43(1):6-9
Objective To establish an HPLC method to determine the concentration of inositol nicotinate(IN) in rat skin, and study the pharmacokinetic characteristics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats. Methods HPLC method was used to establish a simple and rapid analytical method for the determination of IN concentration in the skin of rats at different time points after administration. The established method was used to study the pharmacokinetics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats, and the pharmacokinetic parameters were fitted with DAS software. Results The linearity of the analytical method was good in the concentration range of 0.25-20 μg/ml, the quantitative limit was 0.25 μg/ml, and the average recovery rate was 96.18%. The pharmacokinetic parameters of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats were as follows: t1/2 was (4.555±2.054) h, Tmax was (6±0)h, Cmax was (16.929±2.153)mg/L, AUC0−t was (150.665±16.568) mg·h /L ,AUC0−∞ was (161.074±23.917) mg·h /L, MRT(0−t) was (9.044±0.618)h, MRT(0−∞) was (10.444±1.91) h, CLz/F was (0.19±0.03) L/(h·kg), and Vz/F was (1.19±0.437) L/(h·kg). Conclusion IN could quickly penetrate the skin and accumulate in the skin for a long time, which was beneficial to the pharmacological action of drugs on the lesion site for a long time. The method is simple, rapid, specific and reproducible, which could be successfully applied to the pharmacokinetic study of IN after transdermal administration in rats.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Large models in medical imaging: Advances and prospects.
Mengjie FANG ; Zipei WANG ; Sitian PAN ; Xin FENG ; Yunpeng ZHAO ; Dongzhi HOU ; Ling WU ; Xuebin XIE ; Xu-Yao ZHANG ; Jie TIAN ; Di DONG
Chinese Medical Journal 2025;138(14):1647-1664
Recent advances in large models demonstrate significant prospects for transforming the field of medical imaging. These models, including large language models, large visual models, and multimodal large models, offer unprecedented capabilities in processing and interpreting complex medical data across various imaging modalities. By leveraging self-supervised pretraining on vast unlabeled datasets, cross-modal representation learning, and domain-specific medical knowledge adaptation through fine-tuning, large models can achieve higher diagnostic accuracy and more efficient workflows for key clinical tasks. This review summarizes the concepts, methods, and progress of large models in medical imaging, highlighting their potential in precision medicine. The article first outlines the integration of multimodal data under large model technologies, approaches for training large models with medical datasets, and the need for robust evaluation metrics. It then explores how large models can revolutionize applications in critical tasks such as image segmentation, disease diagnosis, personalized treatment strategies, and real-time interactive systems, thus pushing the boundaries of traditional imaging analysis. Despite their potential, the practical implementation of large models in medical imaging faces notable challenges, including the scarcity of high-quality medical data, the need for optimized perception of imaging phenotypes, safety considerations, and seamless integration with existing clinical workflows and equipment. As research progresses, the development of more efficient, interpretable, and generalizable models will be critical to ensuring their reliable deployment across diverse clinical environments. This review aims to provide insights into the current state of the field and provide directions for future research to facilitate the broader adoption of large models in clinical practice.
Humans
;
Diagnostic Imaging/methods*
;
Precision Medicine/methods*
;
Image Processing, Computer-Assisted/methods*
8.Pathophysiological mechanisms linking chronic stress and cervical spondylosis of vertebral artery type: A theoretical framework of the neuroendocrine-immune network.
Kai HU ; Ping DONG ; Hao WU ; Yue WANG ; Ruijie HOU ; Guangyuan YAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):655-660
Stress is a critical inducer in the onset and progression of many chronic diseases. Prolonged or intense stress can disrupt the overall balance between the nervous, immune, and endocrine systems. The resulting biological signals may act on corresponding receptors in the cervical spine region, leading to adverse pathological changes. The vertebral artery and the surrounding muscular and connective tissues are influenced by biomechanical abnormalities and inflammatory cascades associated with cervical spondylosis of vertebral artery type (CSA), which promotes the release of various hormones. These hormones, through the neuroendocrine-immune system, affect the central nervous system, inducing or exacerbating negative emotional feedback and thereby establishing a "central-local-central" vicious cycle. This article explores the mechanisms underlying the impact of stress on the key CSA symptoms through the neuroendocrine-immune network (NEI) theory, providing a more comprehensive framework for targeted therapeutic interventions in CSA.
Humans
;
Neurosecretory Systems/immunology*
;
Spondylosis/etiology*
;
Vertebral Artery/immunology*
;
Stress, Psychological/complications*
;
Chronic Disease
9.Application of the distraction support in intramedullary nailing treatment for tibial shaft fracture.
Liwei YAO ; Haijiao MAO ; Wenwei DONG ; Zeting WU ; Qing LIU
Chinese Journal of Traumatology 2025;28(2):113-117
PURPOSE:
This study aims to investigate the efficacy of novel distraction support (DS) in intramedullary nailing treatment for tibial shaft fracture.
METHODS:
The random controlled trial included adult patients with tibial shaft fractures who were treated with intramedullary nailing at the trauma center between July 2013 and December 2018. Participants were randomly assigned to either control group (n=43) or DS group (n=42) based on whether DS was used during the operation. All surgical procedures were conducted by a single, experienced surgeon. Parameters such as hospital stay, blood loss, operative time, infection, delayed union, and malalignment were recorded for assessment. Shapiro-Wilk test was used to assess normality, and the F test was adopted to measure variance homogeneity. Continuous variables were presented as mean±standard deviation and compared via independent samples t-tests. Categorical variables are expressed as percentages. The Pearson's Chi-squared or Fisher's exact test was used for categorical variables n (%). Two-sided p<0.05 indicated statistical significance.
RESULTS:
A total of 85 participants were enrolled in the study. All cases achieved acceptable reduction. The operative time was significantly shorter in the DS group than in control group ((75.3±10.5) min vs. (90.4±15.5) min, p<0.001). Additionally, the DS group showed lesser blood loss ((60.1±27.2) mL vs. (85.4±25.4) mL, p<0.001). No significant differences were observed between the 2 groups in terms of hospital stay ((9.4±2.7) days vs. (10.2±3.1) days, p=0.370), infection (3 (7.1%) vs. 2 (4.7%), p=0.978), delayed union (2 (4.8%) vs. 5 (11.6%), p=0.450), and malalignment (3 (7.1%) vs. 5 (11.6%), p=0.713).
CONCLUSION
The use of DS in intramedullary nailing surgery is effective. The application of this DS system may represent a valuable addition to future clinical practice.
Humans
;
Fracture Fixation, Intramedullary/methods*
;
Tibial Fractures/surgery*
;
Male
;
Female
;
Adult
;
Middle Aged
;
Operative Time
;
Length of Stay
;
Young Adult
;
Osteogenesis, Distraction/methods*
10.Single-incision laparoscopic totally extraperitoneal retrieval of retroperitoneal vas deferens in vasovasostomy for obstructive azoospermia patients postchildhood bilateral herniorrhaphy.
Chen-Wang ZHANG ; Wei-Dong WU ; Jun-Wei XU ; Jing-Peng ZHAO ; Er-Lei ZHI ; Yu-Hua HUANG ; Chen-Cheng YAO ; Fu-Jun ZHAO ; Zheng LI ; Peng LI
Asian Journal of Andrology 2025;27(1):137-138

Result Analysis
Print
Save
E-mail