1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Effectiveness of Pentavalent Rotavirus Vaccine - a Propensity Score Matched Test Negative Design Case-Control Study Using Medical Big Data in Three Provinces of China.
Yue Xin XIU ; Lin TANG ; Fu Zhen WANG ; Lei WANG ; Zhen LI ; Jun LIU ; Dan LI ; Xue Yan LI ; Yao YI ; Fan ZHANG ; Lei YU ; Jing Feng WU ; Zun Dong YIN
Biomedical and Environmental Sciences 2025;38(9):1032-1043
OBJECTIVE:
The objective of our study was to evaluate the vaccine effectiveness (VE) of the pentavalent rotavirus vaccine (RV5) among < 5-year-old children in three provinces of China during 2020-2024 via a propensity score-matched test-negative case-control study.
METHODS:
Electronic health records and immunization information systems were used to obtain data on acute gastroenteritis (AGE) cases tested for rotavirus (RV) infection. RV-positive cases were propensity score matched with RV-negative controls for age, visit month, and province.
RESULTS:
The study included 27,472 children with AGE aged 8 weeks to 4 years at the time of AGE diagnosis; 7.98% (2,192) were RV-positive. The VE (95% confidence interval, CI) of 1-2 and 3 doses of RV5 against any medically attended RV infection (inpatient or outpatient) was 57.6% (39.8%, 70.2%) and 67.2% (60.3%, 72.9%), respectively. Among children who received the 3rd dose before turning 5 months of age, 3-dose VE decreased from 70.4% (53.9%, 81.1%) (< 5 months since the 3rd dose) to 63.0% (49.1%, 73.0%) (≥ 1 year since the 3rd dose). The three-dose VE rate was 69.4% (41.3%, 84.0%) for RVGE hospitalization and 57.5% (38.9%, 70.5%) for outpatient-only medically attended RVGE.
CONCLUSION
Three-dose RV5 VE against rotavirus gastroenteritis (RVGE) in children aged < 5 years was higher than 1-2-dose VE. Three-dose VE decreased with time since the 3rd dose in children who received the 3rd dose before turning five months of age, but remained above 60% for at least one year. VE was higher for RVGE hospitalizations than for medically attended outpatient visits.
Humans
;
Rotavirus Vaccines/immunology*
;
China/epidemiology*
;
Case-Control Studies
;
Child, Preschool
;
Infant
;
Rotavirus Infections/epidemiology*
;
Male
;
Propensity Score
;
Female
;
Vaccine Efficacy
;
Gastroenteritis/virology*
;
Vaccines, Attenuated
;
Rotavirus
7.A high-throughput plant canopy leaf area index inversion model based on UAV-LiDAR.
Yuming LIANG ; Xueyan FAN ; Muqing ZHANG ; Wei YAO ; Xiuhua LI ; Zeping WANG ; Sifan DONG ; Xuechen LI
Chinese Journal of Biotechnology 2025;41(10):3817-3827
To explore the feasibility of using UAV-LiDAR for measuring the leaf area index (LAI) of crop canopies, we employed UAV-LiDAR to scan sugarcane canopies during the tillering and elongation stages, acquiring canopy point cloud data. Subsequently, features such as average row height, projected row area, point cloud density at different canopy layers, and the ratios between these parameters were extracted. Three feature selection methods-partial least squares regression (PLSR), XGBoost feature importance (XGBoost-FI), and random forest-recursive feature elimination (RF-RFE)-were adopted to evaluate and identify the optimal input variables for modeling. With these selected variables, LAI inversion models were developed based on random forest (RF) and adaptive boosting (AdaBoost) algorithms, and their performance was assessed. Among the extracted features, the projected row area Sp and the total row point count Ctotal exhibited strong correlations with LAI, with correlation coefficients of 0.73 and 0.72, respectively. The AdaBoost-based LAI inversion model, using the projected row area Sp, average height Havg, mid-layer point cloud density Cm, and total row point count Ctotal as input variables, achieved the best performance, with a coefficient of determination (Rv²) of 0.713 and a root mean square error (RMSEv) of 0.25 on the validation set. This study provides an effective method for high-throughput acquisition of LAI in field crops, offering valuable scientific support for sugarcane field management and breeding efforts.
Plant Leaves/growth & development*
;
Saccharum/growth & development*
;
Algorithms
;
Unmanned Aerial Devices
;
Remote Sensing Technology/methods*
;
Crops, Agricultural/growth & development*
8.Influence of curative-intent resection with textbook outcomes on long-term prognosis of gall-bladder carcinoma: a national multicenter study
Zhipeng LIU ; Zimu LI ; Yule LUO ; Xiaolin ZHAO ; Jie BAI ; Yan JIANG ; Yunfeng LI ; Chao YU ; Fan HUANG ; Zhaoping WU ; Jinxue ZHOU ; Dalong YIN ; Rui DING ; Wei GUO ; Yi ZHU ; Wei CHEN ; Kecan LIN ; Ping YUE ; Yao CHENG ; Haisu DAI ; Dong ZHANG ; Zhiyu CHEN
Chinese Journal of Digestive Surgery 2024;23(7):926-933
Objective:To investigate the influence of curative-intent resection with textbook outcomes of liver surgery (TOLS) on long-term prognosis of gallbladder carcinoma (GBC).Methods:The retrospective cohort study was conducted. The clinicopathological data of 824 patients with GBC in the national multicenter database of Biliary Surgery Group of Elite Group of Chinese Journal of Digestive Surgery, who were admitted to 15 medical centers from January 2014 to January 2021, were collected. There were 285 males and 539 females, aged (62±11)years. According to the evalua-tion criteria of TOLS, patients were divided into those who achieved TOLS and those who did not achieve TOLS. Measurement data with normal distribution were represented as Mean± SD, and com-parison between groups was conducted using the independent sample t test. Measurement data with skewed distribution were represented as M( Q1, Q3), and comparison between groups was conducted using the Mann-Whitney U test. Count data were described as absolute numbers, and comparison between groups was conducted using the chi-square test. Comparison of ordinal data were conduc-ted using the Mann-Whitney U test. The Kaplan-Meier method was used to calculate survival rate and draw survival curve, and the Log-rank test was used for survival analysis. The COX stepwise regression model with backward Wald method was used for univariate and multivariate analyses. Results:(1) Achievement of TOLS. Of the 824 patients undergoing curative-intent resection for GBC, there were 510 cases achieving TOLS and 314 cases not achieving TOLS. (2) Follow-up. Of the 824 patients undergoing curative-intent resection for GBC, after excluding 112 deaths within 90 days after discharge, 712 cases were included for the survival analysis. The median follow-up time, median overall survival time and 5-year overall survival rate of the 510 patients achieving TOLS were 22.1(11.4,30.1)months, 47.6(30.6,64.6)months and 47.5%. The median follow-up time, median overall survival time and 5-year overall survival rate of the 202 patients not achieving TOLS were 14.0(6.8,25.5)months, 24.3(20.0,28.6)months and 21.0%. There was a significant difference in overall survival between patients achieving TOLS and patients not achieving TOLS ( χ2=58.491, P<0.05). (3) Analysis of factors influencing prognosis of patients. Results of multivariate analysis showed that TOLS, carcinoembryonic antigen (CEA), CA19-9, poorly differentiation of tumor, T2 stage of eighth edition of American Joint Committee on Cancer (AJCC) staging, T3 and T4 stage of eighth edition of AJCC staging, N1 stage of the eighth edition of AJCC staging, N2 stage of the eighth edition of AJCC staging, adjuvant therapy were independent factors influencing overall survival time of patients undergoing curative-intent resection for GBC ( hazard ratio=0.452, 1.479, 1.373, 1.612, 1.455, 1.481, 1.835, 1.978, 0.538, 95% c onfidence interval as 0.352-0.581, 1.141-1.964, 1.052-1.791, 1.259-2.063, 1.102-1.920, 1.022-2.147, 1.380-2.441, 1.342-2.915, 0.382-0.758, P<0.05). Conclusion:Patients under-going curative-intent resection for GBC with TOLS can achieve better long-term prognosis.
9.Association between work environment noise perception and cardiovascular diseases, depressive symptoms, and their comorbidity in occupational population
Changwei CAI ; Bo YANG ; Yunzhe FAN ; Bin YU ; Shu DONG ; Yao FU ; Chuanteng FENG ; Honglian ZENG ; Peng JIA ; Shujuan YANG
Chinese Journal of Epidemiology 2024;45(3):417-424
Objective:To explore the association between occupational noise perception and cardiovascular disease (CVD), depression symptoms, as well as their comorbidity in occupational population and provide evidence for the prevention and control of physical and mental illnesses.Methods:A cross-sectional survey design was adopted, based on baseline data in population in 28 prefectures in Sichuan Province and Guizhou Province, and 33 districts (counties) in Chongqing municipality from Southwest Occupational Population Cohort from China Railway Chengdu Group Co., Ltd. during October to December 2021. A questionnaire survey was conducted to collect information about noise perception, depressive symptoms, and the history of CVD. Latent profile analysis model was used to determine identify noise perception type, and multinomial logistic regression analysis was conducted to explore the relationship between different occupational noise perception types and CVD, depression symptoms and their comorbidity.Results:A total of 30 509 participants were included, the mean age was (36.6±10.5) years, and men accounted for 82.0%. The direct perception of occupational noise, psychological effects and hearing/sleep impact of occupational noise increased the risk for CVD, depressive symptoms, and their comorbidity. By using latent profile analysis, occupational noise perception was classified into four levels: low, medium, high, and very high. As the level of noise perception increased, the association with CVD, depressive symptoms, and their comorbidity increased. In fact, very high level occupational noise perception were found to increase the risk for CVD, depressive symptoms, and their comorbidity by 2.14 (95% CI: 1.73-2.65) times, 8.80 (95% CI: 7.91-9.78) times, and 17.02 (95% CI: 12.78-22.66) times respectively compared with low-level occupational noise perception. Conclusions:Different types of occupational noise perception are associated with CVD and depression symptom, especially in the form of CVD complicated with depression symptom. Furthermore, the intensity of occupational noise in the work environment should be reduced to lower the risk for physical and mental health.
10.Mediating effects of body mass index and lipid levels on the association between alcohol consumption and hypertension in occupational population
Shu DONG ; Bin YU ; Bo YANG ; Yunzhe FAN ; Yao FU ; Chuanteng FENG ; Honglian ZENG ; Peng JIA ; Shujuan YANG
Chinese Journal of Epidemiology 2024;45(3):440-446
Objective:To investigate the association between alcohol consumption and hypertension and SBP, DBP and the mediating effects of body mass index (BMI) and lipid level in occupational population, and provide reference for the intervention and prevention of hypertension.Methods:Based on the data of Southwest Occupational Population Cohort from China Railway Chengdu Group Co., Ltd., the information about the demographic characteristics, behavior and lifestyle, blood pressure and lipids level of the participants were collected through questionnaire survey, physical examination and blood biochemical test. Logistic/linear regression was used to analyze the association between alcohol consumption and hypertension, SBP and DBP. The individual and joint mediating effects of BMI, HDL-C, LDL-C, TG, and TC were explored through causal mediating analysis. A network analysis was used to explore the correlation between alcohol consumption, BMI and lipid levels, and hypertension.Results:A total of 22 887 participants were included, in whom 1 825 had newly detected hypertension. Logistic regression analysis found that current/former drinkers had a 33% increase of risk for hypertension compared with never-drinkers ( OR=1.33, 95% CI:1.19-1.48). Similarly, alcohol consumption could increase SBP ( β=1.05, 95% CI:0.69-1.40) and DBP ( β=1.10, 95% CI:0.83-1.38). Overall, BMI and lipid levels could mediate the associations between alcohol consumption and hypertension, SBP and DBP by 21.91%, 28.40% and 22.64%, respectively. BMI and TG were the main mediators, and they were also the two nodes with the highest edge weight and bridge strength centrality in the network of alcohol consumption, BMI, lipid levels and hypertension. Conclusions:Alcohol consumption was associated with increased risk for hypertension, and BMI and TG were important mediators and key nodes in the network. It is suggested that paying attention to the alcohol consumption, BMI and TG might help prevent hypertension in occupational population.

Result Analysis
Print
Save
E-mail