1.Analysis of the chemical constituents of Maxing Shigan decoction by UPLC-Q-TOF/MS
Xue ZHAO ; Yanqiu GU ; Haowen CHU ; Caisheng WU ; Gao LI ; Xiaofei CHEN
Journal of Pharmaceutical Practice and Service 2025;43(11):548-554
Objective To analyze chemical constituents of compound Maxing Shigan decoction by ultra-high perfor-mance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). Methods The separation was performed on a UPLC BEH C18 column (2.1 mm×100 mm, 2.5 µm),with a gradient elution applying 0.1% aqueous formic acid solution and 0.1% formic acid acetonitrile as a mobile phase. The column temperature was 40 °C. The flow rate was 0.4 ml/min and the analysis time was 15 min. Mass spectrometry (MS) data were collected in both positive and negative ESI ion modes. Results Through UPLC-QTOF/MS analysis and reference validation, a total of 59 chemical components in Maxing Shigan decoction were identified. Conclusion An ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method was established to identify the chemical components of Maxing Shigan decoction. This method is simple, efficient, sensitive and accurate, and provides a basis for the elucidation of the pharmacodynamic material basis and mechanism of Maxing Shigan decoction. It can provide data reference for the optimization of the compatibility of traditional Chinese medicine in the treatment of COVID-19.
2.Synthesis of asiatic acid derivatives and determination of their anti-tumor activities
Guo CHEN ; Liming LIU ; Tongtong GU ; Yanqiu MENG
Journal of China Pharmaceutical University 2025;56(4):453-459
Twelve derivatives of asiatic acid were synthesized through acylation, alkylation, oxidative dehydrogenation and other reactions using asiatic acid from usoxane-type pentacyclic triterpenoids as the parent compound. Their structures were confirmed by 1H NMR and 13C NMR, and determined to be novel compounds never reported in literature. Through the MTT method, high-expression human cancer cells (A549 and SGC-7901) were selected for a preliminary in vitro anti-tumor activity study on these compounds. Among them, the IC50 of compound I1 were 11.39 and 9.08 μmol/L respectively, and those of compound I2 were 12.64 and 9.15 μmol/L respectively, which were close to those of sorafenib, a common drug for clinical use. The experimental results show that the synthesized asiatic acid derivatives have certain anti-proliferative effects on the two types of human cancer cells, A549 and SGC-7901, significantly higher than those of asiatic acid. Compounds I1 and I2 show quite strong anti-proliferative effects on human cancer cells A549 and SGC-7901.
3.The mechanism of emodin inhibiting YAP1 and FOXD1 in gastric cancer AGS cells and its related study
Tian GU ; Chunhong LIU ; Fei ZHANG ; Wei QIAN ; Yanqiu ZHU ; Mingliang CHU ; Jiemin LIU
The Journal of Practical Medicine 2024;40(1):59-64,71
Objective To explore the possible mechanism of emodin in inhibiting proliferation,migration,and invasion of AGS cells and in suppressing the expressions of YAP1 and FOXD1.Methods Normal gastric cell GES-1 and gastric cancer cell AGS were cultured with different concentrations of emodin.CCK8 test,scratch test and Transwell assay were used to verify changes in the biological phenotype of AGS cells.TCGA database was applied to analyze expressions of HK2,YAP1 and FOXD1 in gastric cancer tissues and normal gastric tissues.Western blotting method was used to detect the impacts of emodin on HK2,YAP1 and FOXD1 proteins in AGS cells.Exogenous pyruvic acid was added to verify the changes in YAP1 and FOXD1.Results The IC50 of emodin was significantly higher in GES-1 cells than in AGS cells(P<0.05).CCK8 proliferation test,scratch test,and Transwell assay showed that emodin significantly inhibited the biological abilities of AGS(P<0.05 for comparisons).Analysis on the TCGA bioinformatics database found that the expression of key enzymes HK2 in the glycolysis pathway and oncogenes YAP1 and FOXD1 was significantly higher in gastric cancer tissues than in normal gastric tissues(P<0.05 for comparisons).Emodin significantly inhibited the protein expressions of key glycolytic enzymes HK2 and oncogenes YAP1 and FOXD1(P<0.05 for comparisons).With supplement of exogenous glycolytic metabolite pyruvate,the protein expressions of oncogenes YAP1 and FOXD1 significantly increased(P<0.05 for comparisons).Conclusions Emodin has a significant pharmacological inhibitory effect on gastric cancer AGS cells,markedly suppressing their biological phenotype.Emodin not only significantly inhibits the key enzyme HK2 in glycolysis metabolism,but also the protein expressions of oncogenes YAP1 and FOXD1.With the addition of exogenous pyruvate to enhance the glycolytic metabolic pathway,the protein expressions of oncogenes YAP1 and FOXD1 significantly increased.The above results suggest a close association of YAP1 and FOXD1 with glycolytic metabolism.Emodin may inhibit oncogenes YAP1 and FOXD1 through the glycolytic metabolism of gastric cancer AGS cells.
4.Herbal medicines for insomnia through regulating 5-hydroxytryptamine receptors: a systematic review.
Haoran WANG ; Yanqiu GU ; Rahman KHALID ; Xiaofei CHEN ; Ting HAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):483-498
Insomnia is a common sleep disorder without effective therapy and can affect a person's life. The mechanism of the disease is not completely understood. Hence, there is a need to understand the targets related to insomnia, in order to develop innovative therapies and new compounds. Recently, increasing interest has been focused on complementary and alternative medicines for treating or preventing insomnia. Research into their molecular components has revealed that their sedative and sleep-promoting properties rely on the interactions with various neurotransmitter systems in the brain. In this review, the role of 5-hydroxytryptamine (5-HT) in insomnia development is summarized, while a systematic analysis of studies is conducted to assess the mechanisms of herbal medicines on different 5-HT receptors subtypes, in order to provide reference for subsequent research.
Humans
;
Sleep Initiation and Maintenance Disorders/drug therapy*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Plants, Medicinal
;
Receptors, Serotonin
;
Serotonin
5.I n situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography.
Yanqiu GU ; Rong WANG ; Panpan CHEN ; Shengnan LI ; Xinyi CHAI ; Chun CHEN ; Yue LIU ; Yan CAO ; Diya LV ; Zhanying HONG ; Zhenyu ZHU ; Yifeng CHAI ; Yongfang YUAN ; Xiaofei CHEN
Acta Pharmaceutica Sinica B 2022;12(9):3682-3693
Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with K D values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl4-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials.
6.Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system
Xinyi CHAI ; Yanqiu GU ; Lei LV ; Chun CHEN ; Fei FENG ; Yan CAO ; Yue LIU ; Zhenyu ZHU ; Zhanying HONG ; Yifeng CHAI ; Xiaofei CHEN
Journal of Pharmaceutical Analysis 2022;12(5):725-732
Astragali Radix(AR)is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer(NK)cells.However,owing to the complexity of its composition,the specific active ingredients in AR that act on NK cells are not clear yet.Cell membrane chromatography(CMC)is mainly used to screen the active ingredients in a complex system of herbal medicines.In this study,a new comprehensive two-dimensional(2D)NK-92MI CMC/C18 column/time-of-flight mass spectrometry(TOFMS)system was established to screen for potential NK cell acti-vators.To obtain a higher column efficiency,3-mercaptopropyltrimethoxysilane-modified silica was synthesized to prepare the NK-92MI CMC column.In total,nine components in AR were screened from this system,which could be washed out from the NK-92MI/CMC column after 10 min,and they showed good affinity for NK-92MI/CMC column.Two representative active compounds of AR,isoastragaloside Ⅰ and astragaloside Ⅳ,promoted the killing effect of NK cells on K562 cells in a dose-dependent manner.It can thus suggest that isoastragaloside Ⅰ and astragaloside Ⅳ are the main immunomodulatory compo-nents of AR.This comprehensive 2D NK-92MI CMC analytical system is a practical method for screening immune cell activators from other herbal medicines with immunomodulatory effects.
7.Fatty Acid-Binding Protein 4 in Patients with and without Diabetic Retinopathy
Ping HUANG ; Xiaoqin ZHAO ; Yi SUN ; Xinlei WANG ; Rong OUYANG ; Yanqiu JIANG ; Xiaoquan ZHANG ; Renyue HU ; Zhuqi TANG ; Yunjuan GU
Diabetes & Metabolism Journal 2022;46(4):640-649
Background:
Fatty acid-binding protein 4 (FABP4) has been demonstrated to be a predictor of early diabetic nephropathy. However, little is known about the relationship between FABP4 and diabetic retinopathy (DR). This study explored the value of FABP4 as a biomarker of DR in patients with type 2 diabetes mellitus (T2DM).
Methods:
A total of 238 subjects were enrolled, including 20 healthy controls and 218 T2DM patients. Serum FABP4 levels were measured using a sandwich enzyme-linked immunosorbent assay. The grade of DR was determined using fundus fluorescence angiography. Based on the international classification of DR, all T2DM patients were classified into the following three subgroups: non-DR group, non-proliferative diabetic retinopathy (NPDR) group, and proliferative diabetic retinopathy (PDR) group. Multivariate logistic regression analyses were employed to assess the correlation between FABP4 levels and DR severity.
Results:
FABP4 correlated positively with DR severity (r=0.225, P=0.001). Receiver operating characteristic curve analysis was used to assess the diagnostic potential of FABP4 in identifying DR, with an area under the curve of 0.624 (37% sensitivity, 83.6% specificity) and an optimum cut-off value of 76.4 μg/L. Multivariate logistic regression model including FABP4 as a categorized binary variable using the cut-off value of 76.4 μg/L showed that the concentration of FABP4 above the cut-off value increased the risk of NPDR (odds ratio [OR], 3.231; 95% confidence interval [CI], 1.574 to 6.632; P=0.001) and PDR (OR, 3.689; 95% CI, 1.306 to 10.424; P=0.014).
Conclusion
FABP4 may be used as a serum biomarker for the diagnosis of DR.
8.Advances in methodologies for preparation and analysis of new biochromatic stationary phase
Xinyi CHAI ; Yanqiu GU ; Xiaofei CHEN ; Yifeng CHAI
Journal of Pharmaceutical Practice 2022;40(3):193-198
Biochromatography is a new chromatographic technology with great development potential. It has been widely used in drug screening and biomolecular interaction analysis. The core of this technology is the chromatographic stationary phase of biomolecules. Nowadays, it mainly develops cell membrane chromatography, artificial biomimetic membrane chromatography and the various immobilization strategies to directly immobilizes proteins on the stationary phase carrier. This paper reviews the research progress of new biochromatographic stationary phase and the application of biochromatographic analysis based on new stationary phase. And, the applications of biochromatographic stationary phase and micro biochromatographic analysis system based on monolithic column are prospected.
9.Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening.
Xiaofei CHEN ; Yunlong WU ; Chun CHEN ; Yanqiu GU ; Chunyan ZHU ; Suping WANG ; Jiayun CHEN ; Lei ZHANG ; Lei LV ; Guoqing ZHANG ; Yongfang YUAN ; Yifeng CHAI ; Mingshe ZHU ; Caisheng WU
Acta Pharmaceutica Sinica B 2021;11(1):222-236
Lianhuaqingwen (LHQW) capsule, a herb medicine product, has been clinically proved to be effective in coronavirus disease 2019 (COVID-19) pneumonia treatment. However, human exposure to LHQW components and their pharmacological effects remain largely unknown. Hence, this study aimed to determine human exposure to LHQW components and their anti-COVID-19 pharmacological activities. Analysis of LHQW component profiles in human plasma and urine after repeated therapeutic dosing was conducted using a combination of HRMS and an untargeted data-mining approach, leading to detection of 132 LHQW prototype and metabolite components, which were absorbed
10.Research progress on chemical composition and clinical efficacy of Lianhua Qingwen (LHQW) capsule, a traditional Chinese medicine (TCM) used to treat COVID-19
Yuanye ZENG ; Yingying HE ; Qinglong TANG ; Kang LI ; Yanqiu GU ; Xiaofei CHEN
Journal of Pharmaceutical Practice 2021;39(4):291-294
The outbreak of COVID-19 posed a huge threat to human health and social stability. With the rapid spread of the virus around the world, the drug development and related research of novel coronavirus (SARS-CoV-2) have become an urgent issue in the medical field. COVID-19 fails into the category of epidemics in the theory of TCM. LHQW capsule has repeatedly played an important role in many major epidemics. Previous studies have shown that LHQW capsule can inhibit the biological activity of varied viruses including MERS-CoV and SARS-CoV. The paper summarizes the relevant research data and achievements of LHQW capsule in the past few years, reviews the chemical constituents, clinical efficacy and pharmacological effects of LHQW capsule, and provides scientific basis for the anti-virus mechanism of LHQW capsule and clinical treatment of COVID-19.

Result Analysis
Print
Save
E-mail