1.Effect of Modified Tuoli Xiaodusan on Patients After Perianal Abscess Surgery on STAT3/VEGF Pathway
Haoyang DU ; Yuan GAO ; Haiqi FU ; Jinling HE ; Jing ZHANG ; Yangyang YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):187-195
ObjectiveTo explore the clinical efficacy of oral administration of modified Tuoli Xiaodusan on postoperative patients with perianal abscess, and its effects on related inflammatory factors and signal transducers and activators of transcription protein 3 (STAT3)/vascular endothelial growth factor (VEGF) signaling pathways. MethodsFrom January 2023 to December 2023 in Inner Mongolia hospital of traditional Chinese medicine, 60 postoperative patients with perianal abscess who met the inclusion criteria were selected. They were divided into a treatment group and a control group using the random number table method, with 30 cases in each group. The control group received conventional treatment, while the treatment group received additional treatment with modified Tuoli Xiaodusan on the basis of the control group. The course of treatment in both groups was three weeks. On the day of operation and on the 7th, 14th and 21st day after operation, enzyme-linked immunosorbent assay (ELISA) was used to measure the expression levels of serum interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Hematoxylin eosin (HE) staining was used to observe the pathological morphology of pathological tissue. Western blot was used to measure the levels of phosphorylated STAT3 (p-STAT3) and vascular endothelial growth factor (VEGF) proteins, and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the expression level of VEGF mRNA. The clinical efficacy of the two groups was compared according to the wound pain, secretion volume score, and healing rate of patients on the 3rd, 7th, 14th, and 21st day after operation. ResultsThe total effective rate of the treatment group was higher than that of the control group (P<0.05). For intra-group comparison, the pain score of the control group decreased at each time period (P<0.05), and the healing rate increased (P<0.05). The secretion volume score decreased on the 14th and 21st days after operation (P<0.05). The pain score and secretion volume score of the treatment group decreased at each time period (P<0.05), and the healing rate increased (P<0.05). The levels of various inflammatory factors decreased in both groups (P<0.05). Compared with those on the surgical day, the levels of p-STAT3 and VEGF proteins in the wound tissue of the two groups were different on the 7th and 21st days after operation (P<0.05). There were significant differences in VEGF mRNA levels in wound tissue between the two groups at each time period (P<0.01). For inter-group comparison, on the 7th and 14th days after operation, the pain score in the treatment group was lower than that in the control group. On the 7th, 14th and 21st days after operation, the secretion volume scores and healing rate of the treatment group were better than those of the control group (P<0.05). The levels of various inflammatory factors in the treatment group were lower than those in the control group (P<0.05), and the decline rate was faster (P<0.05). On the 7th day after operation, the levels of p-STAT3, VEGF protein, and VEGF mRNA in the wound tissue of the treatment group were higher than those in the control group (P<0.05). HE staining showed that the inflammatory cell infiltration in the treatment group decreased faster. The cell arrangement was more orderly, and new blood vessel lumens were visible. There were no abnormalities in the safety observation indexes of all patients during the study period. ConclusionModified Tuoli Xiaodusan can relieve wound pain after perianal abscess surgery, reduce secretions, and improve wound healing rate. The mechanism may be reducing the levels of serum IL-1β, IL-6, and TNF-α, reducing the inflammatory response of the wound, upregulating the expression of p-STAT3 and VEGF proteins, and stimulating the STAT3/VEGF signaling pathway, thereby accelerating angiogenesis and promoting wound healing.
2.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
3.Next-generation antifungal drugs: Mechanisms, efficacy, and clinical prospects.
Xueni LU ; Jianlin ZHOU ; Yi MING ; Yuan WANG ; Ruirui HE ; Yangyang LI ; Lingyun FENG ; Bo ZENG ; Yanyun DU ; Chenhui WANG
Acta Pharmaceutica Sinica B 2025;15(8):3852-3887
Invasive fungal infections (IFIs) have become prominent global health threats, escalating the burden on public health systems. The increasing occurrence of invasive fungal infections is due primarily to the extensive application of chemotherapy, immunosuppressive therapies, and broad-spectrum antifungal agents. At present, therapeutic practices utilize multiple categories of antifungal agents, such as azoles, polyenes, echinocandins, and pyrimidine analogs. Nevertheless, the clinical effectiveness of these treatments is progressively weakened by the emergence of drug resistance, thereby substantially restricting their therapeutic utility. Consequently, there is an imperative need to expedite the discovery of novel antifungal agents. This review seeks to present an exhaustive synthesis of novel antifungal drugs and candidate agents that are either under current clinical investigation or anticipated to progress into clinical evaluation. These emerging compounds exhibit unique benefits concerning their modes of action, antimicrobial spectra, and pharmacokinetic characteristics, potentially leading to improved therapeutic outcomes relative to conventional antifungal regimens. It is anticipated that these novel therapeutic agents will furnish innovative treatment modalities and enhance clinical outcomes in managing invasive fungal infections.
4.Research progress on Astragali Radix for promoting healing of chronic refractory wound
Yangyang YU ; Yuan GAO ; Jinling HE ; Hao WU ; Keyu CHEN ; Yuxing ZHAO
China Pharmacy 2025;36(19):2473-2478
Chronic refractory wound (CRW) presents significant clinical treatment challenges due to pathological characteristics such as persistent inflammation, bacterial infection, oxidative stress and inadequate angiogenesis. Astragali Radix, a traditional Chinese medicinal herb, exerts multi-target pharmacological effects on CRW through its active components, including Astragalus polysaccharides, flavonoids, and astragaloside Ⅳ, etc. Fundamental studies indicate that these components promote CRW healing by modulating inflammatory responses, inhibiting pathogen growth, improving antioxidant capacity and stimulating neovascularization. Network pharmacology and bioinformatics studies have revealed that active components of Astragali Radix target and modulate key signaling nodes such as nuclear factor-κB, phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and vascular endothelial growth factor receptor, as well as inflammation-angiogenesis-related pathways, thereby synergistically exerting anti-inflammatory and pro-angiogenic effect. Clinical applications have demonstrated that oral formulations (e.g., Huangqi guizhi decoction, Danggui huangqi decoction, etc.) reduce healing time of CRW and lower inflammatory marker levels, while topical preparations (e.g., Zizhu ointment, Huangqi shengji ointment, electrostatically spun Astragalus polysaccharide composite nanofibre dressings, etc.) significantly improve healing rates of CRW and minimize complications.
5.Quantify changes in ambient PM2.5 and three heavy metal components before and after relocation of a steel plant using interrupted time series analysis
Shaofeng SUI ; Xianbiao SHEN ; Yangyang REN ; Zhen YUAN ; Fengchan HAN ; Cheng YANG
Journal of Environmental and Occupational Medicine 2025;42(12):1491-1496
Background Industrial emissions are a well-established major source of urban fine particulate matter (PM2.5) and associated heavy metals. To improve local air quality, Shanghai No. 1 Iron and Steel Plant in Baoshan District was entirely relocated, with all production lines successively shut down in 2018. Objective To evaluate the trends in PM2.5 and three heavy metal concentrations - chromium (Cr), mercury (Hg), and thallium (Tl) —in the local atmosphere pre- and post- relocation of the steel plant. Methods Taking the steel plant relocation in 2019 as the intervention cutoff point, this study was divided into two phases: pre-intervention (January 2017 to December 2018) and post-intervention (January 2019 to December 2021). Monthly mean pollutant concentrations were used to construct an interrupted time series (ITS) model, followed by segmented linear regression to assess the pre- and post-intervention trends in ambient PM2.5 and three heavy metals surrounding thesteel plant. Results The ITS regression analysis revealed that the change in PM2.5 concentration (b2) after the intervention was −7.16 μg·m−3, while the changes in Cr, Hg, and Tl concentrations (b2) were −0.46, −0.03, and −0.06 ng·m−3, respectively. Prior to the intervention, PM2.5 mass concentrations exhibited a temporal decline with a slope of b1 = –0.69 (P<0.05); seasonal adjustment further strengthened the overall significance of the model. Before the intervention, the concentration of Cr increased over time, with a slope of b1=0.12 (P<0.05). After the intervention, the concentration of Cr showed a gradual downward trend over time, with a slope (b1 + b3) of −0.04, and significant seasonal variations were observed. The concentration of Hg decreased over time before the intervention, with a slope of b1=−
6.Recent findings with regard to roles of GGA2 in vesicle transport and related diseases
Yihao TAO ; MUTAILIFU BAIERNA ; Zhengfang QI ; Changwu LIU ; Yuan TIAN ; Yangyang HAN
Chinese Journal of Pathophysiology 2024;40(3):543-550
Cellular dysfunction caused by vesicle transport is associated with a variety of diseases.The trans-Golgi network(TGN)to endosome transport is an important pathway of vesicle transport,and its defects leading to protein balance disorders has been linked to many diseases such as cancer,neurodegenerative diseases and diabetes mellitus.Gol-gi-associated gamma-adaptin ear-containing ADP-ribosylation factor-binding protein 2(GGA2)is a crucial protein in-volved in TGN-endosomal transport.It plays a significant role in the regulation of several diseases,including cancer,Al-zheimer disease,type 2 diabetes mellitus and cerebral ischemia,by mediating protein transport with important biological significance.This article provides an overview of the molecular structure of GGA2,its role in regulating clathrin-mediated protein transport between TGN and endosomes,and its potential implications for a variety of diseases.
7.Finite element model establishment and stress analysis of lumbar-sacral intervertebral disc in ankylosing spondylitis
Zhijie KANG ; Zhenhua CAO ; Yangyang XU ; Yunfeng ZHANG ; Feng JIN ; Baoke SU ; Lidong WANG ; Ling TONG ; Qinghua LIU ; Yuan FANG ; Lirong SHA ; Liang LIANG ; Mengmeng LI ; Yifei DU ; Lin LIN ; Haiyan WANG ; Xiaohe LI ; Zhijun LI
Chinese Journal of Tissue Engineering Research 2024;28(6):840-846
BACKGROUND:Ankylosing spondylitis is a chronic inflammatory disease with chronic rheumatic immunity.Soft tissue ossification and fusion and spinal stiffness can cause biomechanical changes. OBJECTIVE:To reconstruct the lumbar-sacral intervertebral disc in ankylosing spondylitis patients with lumbar kyphosis by finite element analysis,and to study the range of motion of each segment of T11-S1 and the biomechanical characteristics of annulus fibrosus and nucleus pulposus. METHODS:The imaging data were obtained from an ankylosing spondylitis patient with lumbar kyphosis.The original CT image data of continuously scanned spine were imported into Mimics 21.0 in DICOM format,and T11-S1 was reconstructed respectively.The established model was imported into 3-Matic software in the format of"Stl"to reconstruct the intervertebral disc,and the fibrous intervertebral disc model was obtained.The improved model was further imported into Hypermesh software,and the vertebra,nucleus pulposus,annulus fibrosus and ligament were mesh-divided.After the material properties were given,the model was imported into ABAQUS software to observe the range of motion of each vertebral body in seven different working conditions of T11-S1,and analyze the biomechanical characteristics of each segment of annulus fibrosus and nucleus pulposus. RESULTS AND CONCLUSION:(1)The range of motion of L1 vertebrae was higher than that of other vertebrae under six different working conditions:extension,forward flexion,rotation(left and right),and lateral flexion(left and right).The maximum range of motion was 2.18° during L1 vertebral flexion,and the minimum range of motion was 0.12° during L5 vertebral extension.(2)The annular fiber flexion at L2-L3 segments was greater than the extension(P<0.05),and the annular fiber flexion at L3-L4 and L4-L5 segments was less than the extension(P<0.05).The left rotation of L1-L2 annular fibers was greater than the right rotation(P<0.05).The left flexion of the annulus was greater than the right flexion in L1-L2,L2-L3,L3-L4,L4-L5 and L5-S1 segments(P<0.05).(3)The nucleus pulposus stresses of T11-L12,L1-L2,L2-L3,L3-L4 and L4-L5 segments in forward flexion were greater than in extension(P<0.05).The left rotation of T12-L1 and L3-L4 segments was smaller than the right rotation(P<0.05),and that of T11-T12,L1-L2,and L2-L3 segments was larger than the right rotation(P<0.05).The left flexion was larger than the right flexion in the T11-S1 segment.(4)It is concluded that in ankylosing spondylitis patients with lumbar kyphosis,the minimum range of motion of the vertebral body is located at the L5 vertebral body in extension.To prevent fractures,it is recommended to avoid exercise in the extension position.During the onset of lumbar kyphosis in patients with ankylosing spondylitis,the maximum stress of the annulus fibrosus and nucleus pulposus is located in the L1-L2 segment,which is fixed and will not alter with the change of body position.The late surgical treatment and correction of deformity should focus on releasing the pressure of the annulus fibrosus and nucleus pulposus in this segment to avoid the rupture of the annulus fibrosus and the injury of the nucleus pulposus.
8.Biomechanical features of posterior"Y"osteotomy and fixation in treatment of ankylosing spondylitis based on finite element simulation analysis
Le ZHANG ; Zhenhua CAO ; Yunfeng ZHANG ; Yangyang XU ; Feng JIN ; Baoke SU ; Lidong WANG ; Xing WANG ; Ling TONG ; Qinghua LIU ; Yuan FANG ; Lirong SHA ; Haiyan WANG ; Xiaohe LI ; Zhijun LI
Chinese Journal of Tissue Engineering Research 2024;28(12):1842-1848
BACKGROUND:Ankylosing spondylitis is a progressive inflammation of spinal stiffness deformity caused by tissue ossification and fibrosis.The posture of ankylosing spondylitis patients is abnormal and their activities are limited that minor injuries can lead to thoracolumbar fractures.Traditional medical image observation limits doctors'preoperative decision planning and postoperative disease prevention for ankylosing spondylitis treatment. OBJECTIVE:Based on the spinal model of ankylosing spondylitis patients before and after posterior spinal cancellous ossification osteotomy("Y"osteotomy for short),to explore the biomechanical changes of"Y"osteotomy and fixation in the treatment of ankylosing spondylitis. METHODS:Based on the preoperative and postoperative CT images of an ankylosing spondylitis patient who went to the Second Affiliated Hospital of Inner Mongolia Medical University,a three-dimensional spine model(T11-S1)before and after"Y"osteotomy(L3 osteotomy)was reconstructed in Mimics 19.0 software.A 7.5 Nm torque was applied to the top of T11 vertebral body to simulate the movement of the spine under six conditions:flexion,extension,left bending,right bending,left rotation and right rotation.Finally,the range of motion of each vertebral body,the stress of each intervertebral disc,and the stress of the screw rod system were simulated. RESULTS AND CONCLUSION:(1)After"Y"type osteotomy and posterior fixation,the range of motion of all vertebrae in the spine decreased,and the loss rate of upper vertebrae was large(L1:77.95%).(2)The maximum stress of the spinal intervertebral disc before operation occurred at the L1-L2 segment(0.55 MPa),and the maximum stress of the spinal intervertebral disc after operation occurred at the T11-T12 segment(0.50 MPa),and the stress of intervertebral disc below T12 was far less than that before operation.(3)The maximum stress of the screw rod system(166.67 MPa)occurred in the upper and middle segments of the rod body and the root of the pedicle screw.(4)In conclusion,the"Y"type posterior fixation operation enhances the stability of the spine and reduces the range of motion of the spine.The vertebral body decompression of the fixed segment is great and the stress-shielding phenomenon of the lower vertebral body is significant.The stiffness of the rod body and the stress concentration area of the pedicle screw should be strengthened to avoid the fracture of the rod caused by stress fatigue.
9.Effect of arch shapes and missing second premolars on anchorage during maxillary molar distalization with clear aligners
Shiyu WANG ; Yangyang HUANG ; Hao LIU ; Li YANG ; Dian FAN ; Changyong YUAN ; Penglai WANG
Chinese Journal of Tissue Engineering Research 2024;28(28):4541-4546
BACKGROUND:The reciprocal force generated by the molar distalization with clear aligners can lead to anchorage loss.The effect of arch shapes and missing second premolars on anchorage has not been reported. OBJECTIVE:To analyze the effect of arch shapes and missing second premolars on anchorage during molar distalization with clear aligners using the finite element method. METHODS:Cone-beam CT data from an adult male were acquired from the database to establish the maxilla-upper dentition-periodontium-rectangular attachment-clear aligner model.The distal movement amount designed on the bilateral second molars was set to 0.25 mm.First,there were two groups in the study:second premolar bilateral presence and absence groups.Then,four subgroups in each group were created:tapered arch,ovoid arch,square Class Ⅱ Division 1 arch,and Class Ⅱ Division 2 arch groups.The Ansys software was used to calculate the displacement of the anchorage tooth and the stress of the periodontal ligament. RESULTS AND CONCLUSION:Mesial tipping and extrusion of first molars and premolars,labial inclination and intrusion of anterior teeth occurred during the upper second molar distalization with clear aligners.When the bilateral second premolars were missing,the mesial displacement of first molars increased significantly while that of first premolars and anterior teeth decreased in all groups.The square Class Ⅱ Division 1 arch group showed the least anterior labial inclination,while the tapered arch group showed the most.There was no significant difference between the ovoid arch group and the tapered arch group.Moreover,the magnitude of tipping in the square Class Ⅱ Division 2 arch group was slightly higher than that in the Class Ⅱ Division 1 arch group.The stress of the periodontal ligament of the anchorage teeth was concentrated on the cervical and apical regions of the teeth.And the lowest stress level was detected in the square arch group.Compared with the other groups,the stress on the labial cervical area of the periodontal ligaments was also significantly relieved in the square arch group.To conclude,the square arch is more favorable in terms of anterior anchorage control and periodontal ligament stress distribution.Anterior labial inclination efficiency can be increased in cases of Class Ⅱ Division 2 by designing the anterior labial inclination in conjunction with molar distalization.If the second premolar is missing during molar distalization,it is not conducive to opening up the space in the area of the missing tooth.
10.Effect of sagittal overcorrection design on displacement and stress of mandibular anterior teeth intrusion using clear aligners
Yangyang HUANG ; Shiyu WANG ; Hao LIU ; Li YANG ; Penglai WANG ; Changyong YUAN
Chinese Journal of Tissue Engineering Research 2024;28(29):4593-4598
BACKGROUND:The thin alveolar bone in the lower anterior region increases the risk of labial bone resorption when intruding the teeth with clear aligners.The effect of sagittal overcorrection design on the labiolingual control of mandibular anterior teeth intrusion has not been fully investigated. OBJECTIVE:To explore the effect of overcorrection on the changes in the displacement and stress of the mandibular anterior teeth,especially the cervical and apical regions. METHODS:Through a male volunteer cone-beam CT data,the three-dimensional reconstruction of the mandible and teeth was conducted in the MIMICS and GEOMAGIC software.Moreover,the models of periodontal ligaments,attachments,and appliances were created in the SOLIDWORKS software.First,the study was divided into canine intrusion group and incisor intrusion group.Then,the overcorrection(0°,1°,2°)was designed on the bilateral mandibular central and lateral incisors.A total of six models were established.The models were assembled and imported into the ANSYS software to analyze and calculate the displacement and stress level. RESULTS AND CONCLUSION:(1)In the canine intrusion group,canines intruded and tipped lingually while incisors extruded and tipped lingually.In the incisor intrusion group,canines extruded and tipped lingually while incisors intruded and tipped lingually.(2)Without overcorrection,the incisors necks moved lingually while apexes moved labially.With overcorrection,the incisors tended to be upright,followed by labial tilt.The least cervical and apical displacements were detected under 1° overcorrection.(3)With overcorrection,the incisal cervical stress concentration area shifted from labial to lingual in the canine intrusion group,whereas the stress concentration area shifted from lingual to labial in the incisor intrusion group.(4)The incisors tended to tilt lingually when intruding the mandibular anterior teeth with clear aligners.The sagittal overcorrection design was conductive to maintain the stable position of incisors.However,the amount of overcorrection should be moderate.Excessive overcorrection might increase the labial inclination tendencies of incisors.

Result Analysis
Print
Save
E-mail