1.Advancements in CRISPR/Cas systems for disease treatment.
Yangsong XU ; Hao LE ; Qinjie WU ; Ning WANG ; Changyang GONG
Acta Pharmaceutica Sinica B 2025;15(6):2818-2844
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is an adaptive immune system present in most bacteria and archaea, protecting them from infection by exogenous genetic elements. Due to its simplicity, cost-effectiveness, and precise gene editing capabilities, CRISPR/Cas technology has emerged as a promising tool for treating diseases. The continuous refinement of derivative systems has further broadened its scope in disease treatment. Nevertheless, the heterogeneous physiopathological nature of diseases and variations in disease onset sites pose significant challenges for in vivo applications of CRISPR systems. The efficiency of CRISPR systems in disease treatment is directly influenced by the performance of the delivery system. Additionally, concerns such as off-target effects present crucial hurdles in the clinical implementation of CRISPR systems. This review provides a comprehensive overview of the development of CRISPR systems, vector technologies, and their applications in disease treatment, while also addressing the challenges encountered in clinical settings. Furthermore, future research directions are outlined to pave the way for advancements in CRISPR-based therapies.
2.A self-cascade nanoCRISPR prompts transcellular penetration to potentiate gene editing and tumor killing.
Chao LIU ; Yangsong XU ; Ning WANG ; Hongyu LIU ; Xi YANG ; Shiyao ZHOU ; Dongxue HUANG ; Yingjie LI ; Yanjie YOU ; Qinjie WU ; Changyang GONG
Acta Pharmaceutica Sinica B 2025;15(11):5933-5944
CRISPR/Cas9-based therapeutics face significant challenges in penetrating the dense microenvironment of solid tumors, resulting in insufficient gene editing and compromised treatment efficacy. Current nanostrategies, which mainly focus on the paracellular pathway attempted to improve gene editing performance, whereas their efficiency remains uneven in the heterogenous extracellular matrix. Here, the nanoCRISPR system is prepared with self-cascading mechanisms for gene editing-mediated robust apoptosis and transcellular penetration. NanoCRISPR unlocks its self-cascade capability within the matrix metallopeptidase 2-enriched tumor microenvironment, initiating the transcellular penetration. By facilitating cellular uptake, nanoCRISPR triggers robust apoptosis in edited malignancies, promoting further transcellular penetration and amplifying gene editing in neighboring tumor cells. Benefiting from self-cascade between robust apoptosis and transcellular penetration, nanoCRISPR demonstrates continuous gene transfection/tumor killing performance (transfection/apoptosis efficiency: 1st round: 85%/84.2%; 2nd round: 48%/27%) and homogeneous penetration. In xenograft tumor-bearing mice, nanoCRISPR treatment achieves remarkable anti-tumor efficacy (∼83%) and significant survival benefits with minimal toxicity. This strategy presents a promising paradigm emphasizing transcellular penetration to enhance the effectiveness of CRISPR-based antitumor therapeutics.
3.Progresses and prospects on frequency recognition methods for steady-state visual evoked potential.
Yangsong ZHANG ; Min XIA ; Ke CHEN ; Peng XU ; Dezhong YAO
Journal of Biomedical Engineering 2022;39(1):192-197
Steady-state visual evoked potential (SSVEP) is one of the commonly used control signals in brain-computer interface (BCI) systems. The SSVEP-based BCI has the advantages of high information transmission rate and short training time, which has become an important branch of BCI research field. In this review paper, the main progress on frequency recognition algorithm for SSVEP in past five years are summarized from three aspects, i.e., unsupervised learning algorithms, supervised learning algorithms and deep learning algorithms. Finally, some frontier topics and potential directions are explored.
Algorithms
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Evoked Potentials, Visual
;
Photic Stimulation

Result Analysis
Print
Save
E-mail