1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Analysis of Correlation between Platelet Desialylation, Apoptosis and Platelet Alloantibody and CD8+ T Cells in Platelet Transfusion Refractoriness.
Yan ZHOU ; Li-Yang LIANG ; Chang-Shan SU ; Hui-Hui MO ; Ying CHEN ; Fang LU ; Yu-Chen HUANG ; Zhou-Lin ZHONG
Journal of Experimental Hematology 2025;33(4):1138-1144
OBJECTIVE:
To investigate the correlation between platelet alloantibodies and CD8+ T cell with platelet desialylation and apoptosis in platelet transfusion refractoriness(PTR).
METHODS:
The expression of RCA-1, CD62P and Neu1 on platelets were detected in 135 PTR patients and 260 healthy controls. The ability of PTR patients' sera with anti-HLA antibody, anti-CD36 antibody and antibody-negative groups to induce platelet desialylation and apoptosis, and the potential effect of FcγR inhibitors on desialylation and apoptosis were evaluated. Additionally, the association between CD8+ T cells and platelet desialylation in patients was analyzed.
RESULTS:
The expression of RCA-1 and Neu1 on platelets in PTR patients were significantly higher than those in healthy donors(P < 0.05), but were not related to platelet alloantibody (P >0.05). The sera of PTR patients generally induced platelet desialylation in vitro (P < 0.05), with no significant differences among the groups(P >0.05). However, the sera with anti-CD36 antibodies could induce platelet apoptosis significantly higher than that in the anti-HLA antibody group and antibody-negative group in vitro (P < 0.05). In PTR patients with anti-CD36 antibodies, platelet apoptosis was dependent on FcγR signaling, while desialylation is not. Moreover, CD8+ T cells in PTR patients were significantly associated with platelet desialylation (P < 0.05).
CONCLUSION
Platelet desialylation is a common pathological phenomenon in PTR patients, which involves the participation of CD8+ T cell, but isn't associated with platelet alloantibody; while anti-CD36 antibodies have potential clinical significance in predicting platelet apoptosis in PTR patients.
Humans
;
Apoptosis
;
CD8-Positive T-Lymphocytes/immunology*
;
Blood Platelets/metabolism*
;
Platelet Transfusion
;
Isoantibodies
;
Male
;
Female
;
Middle Aged
3.SAE1 promotes tumor cell malignancy via SUMOylation and liquid-liquid phase separation facilitated nuclear export of p27.
Ling WANG ; Jie MIN ; Jinjun QIAN ; Xiaofang HUANG ; Xichao YU ; Yuhao CAO ; Shanliang SUN ; Mengying KE ; Xinyu LV ; Wenfeng SU ; Mengjie GUO ; Nianguang LI ; Shiqian QI ; Hongming HUANG ; Chunyan GU ; Ye YANG
Acta Pharmaceutica Sinica B 2025;15(4):1991-2007
Most cancers are currently incurable, partly due to abnormal post-translational modifications (PTMs). In this study, we initially used multiple myeloma (MM) as a working model and found that SUMOylation activating enzyme subunit 1 (SAE1) promotes the malignancy of MM. Through proteome microarray analysis, SAE1 was identified as a potential target for bioactive colcemid or its derivative colchicine. Elevated levels of SAE1 were associated with poor clinical survival and increased MM proliferation in vitro and in vivo. Additionally, SAE1 directly SUMOylated and upregulated the total protein expression of p27, leading to LLPS-mediated nuclear export of p27. Our study also demonstrated the involvement of SAE1 in other types of cancer cells, and provided the first monomer crystal structure of SAE1 and its key binding model with colchicine. Colchicine also showed promising results in the Patient-Derived Tumor Xenograft (PDX) model. Furthermore, a controlled clinical trial with 56 MM patients demonstrated the clinical efficacy of colchicine. Our findings reveal a novel mechanism by which tumor cells evade p27-induced cellular growth arrest through p27 SUMOylation-mediated nuclear export. SAE1 may serve as a promising therapeutic target, and colchicine may be a potential treatment option for multiple types of cancer in clinical settings.
4.Ablation of macrophage transcriptional factor FoxO1 protects against ischemia-reperfusion injury-induced acute kidney injury.
Yao HE ; Xue YANG ; Chenyu ZHANG ; Min DENG ; Bin TU ; Qian LIU ; Jiaying CAI ; Ying ZHANG ; Li SU ; Zhiwen YANG ; Hongfeng XU ; Zhongyuan ZHENG ; Qun MA ; Xi WANG ; Xuejun LI ; Linlin LI ; Long ZHANG ; Yongzhuo HUANG ; Lu TIE
Acta Pharmaceutica Sinica B 2025;15(6):3107-3124
Acute kidney injury (AKI) has high morbidity and mortality, but effective clinical drugs and management are lacking. Previous studies have suggested that macrophages play a crucial role in the inflammatory response to AKI and may serve as potential therapeutic targets. Emerging evidence has highlighted the importance of forkhead box protein O1 (FoxO1) in mediating macrophage activation and polarization in various diseases, but the specific mechanisms by which FoxO1 regulates macrophages during AKI remain unclear. The present study aimed to investigate the role of FoxO1 in macrophages in the pathogenesis of AKI. We observed a significant upregulation of FoxO1 in kidney macrophages following ischemia-reperfusion (I/R) injury. Additionally, our findings demonstrated that the administration of FoxO1 inhibitor AS1842856-encapsulated liposome (AS-Lipo), mainly acting on macrophages, effectively mitigated renal injury induced by I/R injury in mice. By generating myeloid-specific FoxO1-knockout mice, we further observed that the deficiency of FoxO1 in myeloid cells protected against I/R injury-induced AKI. Furthermore, our study provided evidence of FoxO1's pivotal role in macrophage chemotaxis, inflammation, and migration. Moreover, the impact of FoxO1 on the regulation of macrophage migration was mediated through RhoA guanine nucleotide exchange factor 1 (ARHGEF1), indicating that ARHGEF1 may serve as a potential intermediary between FoxO1 and the activity of the RhoA pathway. Consequently, our findings propose that FoxO1 plays a crucial role as a mediator and biomarker in the context of AKI. Targeting macrophage FoxO1 pharmacologically could potentially offer a promising therapeutic approach for AKI.
5.Linagliptin synergizes with cPLA2 inhibition to enhance temozolomide efficacy by interrupting DPP4-mediated EGFR stabilization in glioma.
Dongyuan SU ; Biao HONG ; Shixue YANG ; Jixing ZHAO ; Xiaoteng CUI ; Qi ZHAN ; Kaikai YI ; Yanping HUANG ; Jiasheng JU ; Eryan YANG ; Qixue WANG ; Junhu ZHOU ; Yunfei WANG ; Xing LIU ; Chunsheng KANG
Acta Pharmaceutica Sinica B 2025;15(7):3632-3645
The polymerase 1 and transcript release factor (PTRF)-cytoplasmic phospholipase A2 (cPLA2) phospholipid remodeling pathway facilitates tumor proliferation in glioma. Nevertheless, blockade of this pathway leads to the excessive activation of oncogenic receptors on the plasma membrane and subsequent drug resistance. Here, CD26/dipeptidyl peptidase 4 (DPP4) was identified through screening of CRISPR/Cas9 libraries. Suppressing PTRF-cPLA2 signaling resulted in the activation of the epidermal growth factor receptor (EGFR) pathway through phosphatidylcholine and lysophosphatidylcholine remodeling, which ultimately increased DPP4 transcription. In turn, DPP4 interacted with EGFR and prevented its ubiquitination. Linagliptin, a DPP4 inhibitor, facilitated the degradation of EGFR by blocking its interaction with DPP4. When combined with the cPLA2 inhibitor AACOCF3, it exhibited synergistic effects and led to a decrease in energy metabolism in glioblastoma cells. Subsequent in vivo investigations provided further evidence of a synergistic impact of linagliptin by augmenting the sensitivity of AACOCF3 and strengthening the efficacy of temozolomide. DPP4 serves as a novel target and establishes a constructive feedback loop with EGFR. Linagliptin is a potent inhibitor that promotes EGFR degradation by blocking the DPP4-EGFR interaction. This study presents innovative approaches for treating glioma by combining linagliptin with AACOCF3 and temozolomide.
6.Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics.
Qiuping ZHANG ; Qiuju HUANG ; Zhiping CHENG ; Wei XUE ; Shoushi LIU ; Yunnuo LIAO ; Xiaolan LI ; Xin CHEN ; Yaoyao HAN ; Dan ZHU ; Zhiheng SU ; Xin YANG ; Zhuo LUO ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):64-76
Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed through Hoechst staining and Western blotting assays. Proteomics technology was employed to identify key molecules and significant signaling pathways modulated by XAP in PCa cells. To further validate potential key genes and important pathways, a series of assays were conducted, including acridine orange (AO) staining, transmission electron microscopy, and immunofluorescence assays. The molecular mechanism of XAP against PCa in vivo was examined using a PC3 xenograft mouse model. Results demonstrated that XAP significantly inhibited cell proliferation in multiple PCa cell lines. In C4-2 and prostate cancer cell line-3 (PC3) cells, XAP induced cellular apoptosis, evidenced by reduced B-cell lymphoma 2 (Bcl-2) levels and elevated Bcl-2-associated X (Bax) levels. Proteomic, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) investigations revealed a strong correlation between forkhead box O3a (FoxO3a) autophagic degradation and the anti-PCa action of XAP. XAP hindered autophagy by reducing the expression levels of autophagy-related protein 5 (Atg5)/autophagy-related protein 12 (Atg12) and enhancing FoxO3a expression and nuclear translocation. Furthermore, XAP exhibited potent anti-PCa action in PC3 xenograft mice and triggered FoxO3a nuclear translocation in tumor tissue. These findings suggest that XAP induces PCa apoptosis via inhibition of FoxO3a autophagic degradation, potentially offering a novel perspective on XAP injection as an effective anticancer therapy for PCa.
Male
;
Humans
;
Prostatic Neoplasms/physiopathology*
;
Autophagy/drug effects*
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Proteomics
;
Mice
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Forkhead Box Protein O3/genetics*
;
Xenograft Model Antitumor Assays
;
Mice, Nude
;
Mice, Inbred BALB C
7.Optimization of extraction process with deep eutectic solvents and analysis of antioxidant activity of Gastrodia elata polysaccharides.
Chanchan SHI ; Qianxia SU ; Min YANG ; Xiao SUN ; Xinyi HUANG
Chinese Journal of Biotechnology 2025;41(10):3863-3875
This study optimizes the extraction process and explores the antioxidant activity of Gastrodia elata polysaccharides, aiming to provide theoretical reference for the extraction, development, and application of the polysaccharides. Polysaccharides were extracted from G. elata by an ultrasonic-assisted method with deep eutectic solvents. The extraction process was optimized by single factor and response surface tests. The antioxidant activity of polysaccharides was evaluated by DPPH and ABTS+ free radical scavenging rates. The optimal deep eutectic solvents were composed of choline chloride and lactic acid at a molar ratio of 1:2. The optimal extraction conditions were the ultrasonic treatment at 50 ℃ for 48 min, a solid-to-liquid ratio of 1:38, and a water content of 42%. Under these conditions, the polysaccharide yield reached (19.88±0.93)%. The results of antioxidant activity experiment in vitro showed that the scavenging rates of G. elata polysaccharides on DPPH and ABTS+ free radicals were up to (26.39±1.47)% and (30.61±0.16)%, respectively, which indicated that the polysaccharides extracted by the deep eutectic solvents had a certain antioxidant ability. The extracted polysaccharides can be further studied and developed as a potential natural antioxidant.
Polysaccharides/pharmacology*
;
Gastrodia/chemistry*
;
Antioxidants/pharmacology*
;
Deep Eutectic Solvents/chemistry*
;
Solvents/chemistry*
8.Expert consensus on whole-process management of drug traceability codes in medical institutions of Sichuan province
Qianghong PU ; Yilan HUANG ; Yilong LIU ; Xiaosi LI ; Lin YUAN ; Jiangping YU ; Bo JIANG ; Peng ZHANG ; Qiang SU ; Liangming ZHANG ; Jie WAN ; Li CHEN ; Qian JIANG ; Jianhua FAN ; Yong YANG
China Pharmacy 2025;36(24):3017-3022
OBJECTIVE To provide standardized whole-process guidance on drug traceability codes for medical institutions in Sichuan province, ensuring medication safety and compliance with medical insurance supervision requirements. METHODS Based on evidence-based principles and expert consensus, Expert Consensus on Whole-process Management of Drug Traceability Codes in Medical Institutions of Sichuan Province (hereinafter referred to as the Consensus) was formulated through systematic literature review, field investigations, establishment of a multidisciplinary expert committee and multiple rounds of questionnare consultation via the modified Delphi method, and finalized through consensus meetings. RESULTS & CONCLUSIONS The Consensus clarifies key operating procedures for code verification, code assignment and code return, whole-process operational standards for drug warehouse acceptance and storage, drug warehouse outbound delivery and pharmacy acceptance check, drug distribution and dispensing in pharmacy and intravenous admixture center, medication administration in nursing units and examination departments, as well as drug return process. Key recommendations are proposed such as improving the core functions of the drug traceability system, unifying the hospital-wide traceability code database, strengthening the management of traceability codes for backup medications, establishing a management organization and institutional framework, and optimizing the architectural design and data governance requirements of the drug traceability system. The release of the Consensus will provide scientific, standardized and implementable practical guidelines for medical institutions of Sichuan province, helping to improve closed-loop management of the drug traceability system, strengthen medication safety and fulfil medical insurance fund supervision.
9.Investigation on vehicle occupant dummy applicability for under-foot impact loading conditions
Teng-Fei TIAN ; Fu-Hao MO ; Hao-Yang SU ; Can HUANG ; Hui ZHAO ; Jun LIU ; Bo SHANG ; Kui LI ; Jin-Long QIU
Chinese Journal of Traumatology 2024;27(4):235-241
Purpose::Under-foot impact loadings can cause serious lower limb injuries in many activities, such as automobile collisions and underbody explosions to military vehicles. The present study aims to compare the biomechanical responses of the mainstream vehicle occupant dummies with the human body lower limb model and analyze their robustness and applicability for assessing lower limb injury risk in underfoot impact loading environments.Methods::The Hybrid III model, the test device for human occupant restraint (THOR) model, and a hybrid human body model with the human active lower limb model were adopted for under-foot impact analysis regarding different impact velocities and initial lower limb postures.Results::The results show that the 2 dummy models have larger peak tibial axial force and higher sensitivity to the impact velocities and initial postures than the human lower limb model. In particular, the Hybrid III dummy model presented extremely larger peak tibial axial forces than the human lower limb model. In the case of minimal difference in tibial axial force, Hybrid III's tibial axial force (7.5 KN) is still 312.5% that of human active lower limb's (2.4 KN). Even with closer peak tibial axial force values, the biomechanical response curve shapes of the THOR model show significant differences from the human lower limb model.Conclusion::Based on the present results, the Hybrid III dummy cannot be used to evaluate the lower limb injury risk in under-foot loading environments. In contrast, potential improvement in ankle biofidelity and related soft tissues of the THOR dummy can be implemented in the future for better applicability.
10.Salary reforms under high-quality development of public hospitals:taking a public hospital as an example
Haozhe HUANG ; Guoguan ZHENG ; Lingkai SU ; Qi GUO ; Guoli YANG
Modern Hospital 2024;24(5):773-775,779
A high-level performance management system is indispensable for supporting the high-quality development of public hospitals.Under the background of comprehensive overhaul in the remuneration mechanisms within public hospitals and promotion of the contemporary management system of public hospitals,an increasing number of these hospitals are embracing per-formance-driven reform.Through a systematic analysis of the current issues in the remuneration system reform of public hospitals,this paper conducts a series of reform measures implemented within these public hospital to underscore the beneficial impact of ef-fective performance appraisal andremuneration incentives on the morale of medical staff and the sustainable cultivation of talent.This paper seeks to offer insights into enhancing remuneration system reforms and fostering high-quality development in public hospitals in the contemporary era.

Result Analysis
Print
Save
E-mail