1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Lnx1 expression in cortical neurons of rats with traumatic brain injury and mechanisms involved in secondary brain injury
Yanxia MA ; Yanwei YANG ; Yuhang MA ; Di LI ; Xiaoyan WANG ; Mingming ZOU ; Shanwen WEI
Chinese Journal of Tissue Engineering Research 2025;29(1):24-30
BACKGROUND:Apoptosis plays an important role in secondary brain injury.Therefore,to explore the pathophysiological mechanism of promoting nerve cell survival after traumatic brain injury provides a new direction and theoretical basis for the prevention and treatment of traumatic brain injury. OBJECTIVE:To explore the expression changes of Lnx1 molecule in mammalian cortical neurons after brain injury and the possible mechanism involved in secondary brain injury. METHODS:Eighty adult SD rats were divided into 20 male and 20 female mice in sham operation group and 20 male and 20 female mice in traumatic brain injury group.The traumatic brain injury rat model was established by heavy falling method.At 6,12,24,48,and 72 hours after brain injury,the expression of related molecules in damaged cortical neurons was analyzed by RT-qPCR,western blot assay,and immunofluorescence staining. RESULTS AND CONCLUSION:(1)The brain tissue of traumatic brain injury group was bleeding and obvious tissue injury could be observed.Water content of brain tissue increased after traumatic brain injury.(2)Compared with the sham operation group,the expression of Lnx1 in cortical neurons after traumatic brain injury increased significantly at 24 hours after injury.(3)After traumatic brain injury,the expression of PBK and BCR protein decreased,and the pro-survival factor ctgf increased.(4)These findings suggest that after traumatic brain injury,the expression of Lnx1 is up-regulated in neurons,which may be due to the decrease of the expression of its target molecules PBK and BCR,and further promote the expression of living factor ctgf,which has a protective effect on the damaged neurons.
4.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.
5.Herbal Textual Research on Houttuyniae Herba in Famous Classical Formulas
Dan ZHAO ; Changgui YANG ; Chuanzhi KANG ; Chenghong XIAO ; Zhikun WU ; Hongliang MA ; Jiwen WANG ; Xiufu WAN ; Sheng WANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):250-259
This article systematically analyzes the historical evolution of the name, medicinal parts, origin, harvesting, processing and other aspects of Houttuyniae Herba(HH) by referring to the medical books, prescription books and other documents of the past dynasties, combined with the research materials related to modern and contemporary times, in order to provide a basis for the development of famous classical formulas containing this herb. In ancient literature, HH was often referred to as "Ji" and "Jicai", the name of "Ji" was first recorded in Mingyi Bielu during the Han and Wei dynasties, and the name of Yuxingcao was first seen in Lyuchanyan Bencao during the southern Song dynasty and has continued to this day. The origin of HH used throughout history is consistent, all of which are the whole herb or aboveground parts of Houttuynia cordata in Saururaceae family. HH recorded throughout history has a wide range of production areas, mostly self-produced self-marketing. In ancient times, fresh HH was often used as medicine by pounding its juice without involving any processing steps. Both fresh and dried products can be used as medicine, the fresh products uses the whole plant, while the dried products uses the aboveground parts, which are cleaned, selected and processed before use. Fresh products are harvested regardless of season, while dried products are harvested in both summer and autumn, with summer as the best. In ancient times, there were no specific requirements for the quality of HH, while in modern times, "intact stems and leaves with a strong fishy smell" are preferred. In addition, the medicinal properties of HH have undergone significant changes from ancient to modern times. In the early period, it was believed that its medicinal property was slightly warm, until the 1977 edition of Chinese Pharmacopoeia officially changed it to slightly cold. Both ancient and modern literature states that HH can be used for the treatment of carbuncle and malignant sores, Lyuchanyan Bencao for the first time introduced HH fresh juice can relieve summer heat, since Diannan Bencao recorded that it can be used for lung carbuncle, and gradually developed into the first choice for the treatment of lung carbuncle. Based on the research results, it is suggested that fresh herb or dried aboveground parts of H. cordata are used as medicine when developing famous classical formulas.
6.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
7.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.
8.Standardization of electronic medical records data in rehabilitation
Yifan TIAN ; Fang XUN ; Haiyan YE ; Ye LIU ; Yingxin ZHANG ; Yaru YANG ; Zhongyan WANG ; Meng ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Fubiao HUANG ; Qiuchen HUANG ; Yiji WANG ; Di CHEN ; Zhuoying QIU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):33-44
ObjectiveTo explore the data standard system of electronic medical records in the field of rehabilitation, focusing on the terminology and coding standards, data structure, and key content categories of rehabilitation electronic medical records. MethodsBased on the Administrative Norms for the Application of Electronic Medical Records issued by the National Health Commission of China, the electronic medical record standard architecture issued by the International Organization for Standardization and Health Level Seven (HL7), the framework of the World Health Organization Family of International Classifications (WHO-FICs), Basic Architecture and Data Standards of Electronic Medical Records, Basic Data Set of Electronic Medical Records, and Specifications for Sharing Documents of Electronic Medical Records, the study constructed and organized the data structure, content, and data standards of rehabilitation electronic medical records. ResultsThe data structure of rehabilitation electronic medical records should strictly follow the structure of electronic medical records, including four levels (clinical document, document section, data set and data element) and four major content areas (basic information, diagnostic information, intervention information and cost information). Rehabilitation electronic medical records further integrated information related to rehabilitation needs and characteristics, emphasizing rehabilitation treatment, into clinical information. By fully applying the WHO-FICs reference classifications, rehabilitation electronic medical records could establish a standardized framework, diagnostic criteria, functional description tools, coding tools and terminology index tools for the coding, indexing, functional description, and analysis and interpretation of diseases and health problems. The study elaborated on the data structure and content categories of rehabilitation electronic medical records in four major categories, refined the granularity of reporting rehabilitation content in electronic medical records, and provided detailed data reporting guidance for rehabilitation electronic medical records. ConclusionThe standardization of rehabilitation electronic medical records is significant for improving the quality of rehabilitation medical services and promoting the rehabilitation process of patients. The development of rehabilitation electronic medical records must be based on the national and international standards. Under the general electronic medical records data structure and standards, a rehabilitation electronic medical records data system should be constructed which incorporates core data such as disease diagnosis, functional description and assessment, and rehabilitation interventions. The standardized rehabilitation electronic medical records scheme constructed in this study can support the improvement of standardization of rehabilitation electronic medical records data information.
9.Standardization of outpatient medical record in rehabilitation setting
Ye LIU ; Qing QIN ; Haiyan YE ; Yifan TIAN ; Yingxin ZHANG ; Yaru YANG ; Zhongyan WANG ; Meng ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Fubiao HUANG ; Qiuchen HUANG ; Yiji WANG ; Di CHEN ; Zhuoying QIU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):45-54
ObjectiveTo analyze the data structure and standards of rehabilitation outpatient medical records, to provide data support for improving the quality of rehabilitation outpatient care and developing medical insurance payment policies. MethodsBased on the normative documents issued by the National Health Commission, Basic Standards for Medical Record Writing and Standards for Electronic Medical Record Sharing Documents, in accordance with the Quality Management Regulations for Outpatient (Emergency) Diagnosis and Treatment Information Pages (Trial), reference to the framework of the World Health Organization Family of International Classifications (WHO-FICs), the data framework and content of rehabilitation outpatient medical records were determined, and the data standards were discussed. ResultsThis study constructed a data framework for rehabilitation outpatient medical records, including four main components: patient basic information, visit process information, diagnosis and treatment information, and cost information. Three major reference classifications of WHO-FICs, International Classification of Diseases, International Classification of Functioning, Disability and Health, and International Classification of Health Interventions,were used to establish diagnostic standards and standardized terminology, as well as coding disease diagnosis, functional description, functional assessment, and rehabilitation interventions, to improve the quality of data reporting, and level of quality control in rehabilitation. ConclusionThe structuring and standardization of rehabilitation outpatient medical records are the foundation for sharing of rehabilitation data. The using of the three major classifications of WHO-FICs is valuable for the terminology and coding of disease diagnosis, functional description and assessment, and intervention in rehabilitation outpatient medical records, which is significant for sharing and interconnectivity of rehabilitation outpatient data, as well as for optimizing the quality and safety of rehabilitation medical services.
10.Structure, content and data standardization of inpatient rehabilitation medical record summary sheet
Haiyan YE ; Qing QIN ; Ye LIU ; Yifan TIAN ; Yingxin ZHANG ; Yaru YANG ; Zhongyan WANG ; Meng ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Fubiao HUANG ; Qiuchen HUANG ; Yiji WANG ; Di CHEN ; Zhuoying QIU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):55-66
ObjectiveTo explore the standardization of inpatient rehabilitation medical record summary sheet, encompassing its structure, content and data standards, to enhance the standardization level of inpatient rehabilitation medical record summary sheet, improve data reporting quality, and provide accurate data support for medical insurance payment, hospital performance evaluation, and rehabilitation discipline evaluation. MethodsBased on the relevant specifications of the National Health Commission's Basic Norms for Medical Record Writing, Specifications for Sharing Documents of Electronic Medical Records, and Quality Management and Control Indicators for Inpatient Medical Record Summary Sheet (2016 Edition), this study analyzed the structure and content of the inpatient rehabilitation medical record summary sheet. The study systematically applied the three major reference classifications of the World Health Organization Family of International Classifications, International Classification of Diseases (ICD-10/ICD-11, ICD-9-CM-3), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), for disease diagnosis, functional description and assessment, and rehabilitation intervention, forming a standardized terminology system and coding methods. ResultsThe inpatient rehabilitation medical record summary sheet covered four major sections: inpatient information, hospitalization information, diagnosis and treatment information, and cost information. ICD-10/ICD-11 were the standards and coding tools for admission and discharge diagnoses in the inpatient rehabilitation medical record summary sheet. The three functional assessment tools recommended by ICD-11, the 36-item version of World Health Organization Disability Assessment Schedule 2.0, Brief Model Disability Survey and Generic Functioning domains, as well as ICF, were used for rehabilitation functioning assessment and the coding of outcomes. ICHI Beta-3 and ICD-9-CM-3 were used for coding surgical procedures and operations in the medical record summary sheet, and also for coding rehabilitation intervention items. ConclusionThe inpatient rehabilitation medical record summary sheet is a summary of the relevant content of the rehabilitation medical record and a tool for reporting inpatient rehabilitation data. It needs to be refined and optimized according to the characteristics of rehabilitation, with necessary data supplemented. The application of ICD-11/ICD-10, ICF and ICHI Beta-3/ICD-9-CM-3 classification standards would comprehensively promote the accuracy of inpatient diagnosis of diseases and functions. Based on ICD-11 and ICF, relevant functional assessment result data would be added, and ICHI Beta-3/ICD-9-CM-3 should be used to code rehabilitation interventions. Improving the quality of rehabilitation medical records and inpatient rehabilitation medical record summary sheet is an important part of rehabilitation quality control, and also lays an evidence-based data foundation for the analysis and application of inpatient rehabilitation medical record summary sheet.

Result Analysis
Print
Save
E-mail