1.Da Chaihutang for Treatment of Sepsis with Yang Syndrome:A Randomized Controlled Trial
Na HUANG ; Guangmei CHEN ; Xingyu KAO ; Zhen YANG ; Weixian XU ; Kang YUAN ; Junna LEI ; Jingli CHEN ; Mingfeng HE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):55-63
ObjectiveTo explore the clinical efficacy and safety of Da Chaihutang (DCH) for the treatment of sepsis with Yang syndrome. MethodsA total of 70 patients suffering from sepsis with Yang syndrome were randomly divided into an observation group and a control group, with 35 cases in each group. They both received standard Western medicine treatment. The observation group was additionally given a dose of DCH, which was boiled into 100 mL and taken twice. The control group was additionally given an equal volume and dosage of warm water. The intervention lasted for three days. The 28-day all-cause mortality and the changes in the following indicators before and after intervention were compared between the two groups, including sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) score,white blood cell (WBC),the percentage of neutrophils (NEU%),C-reactive protein (CRP),procalcitonin (PCT),alanine transaminase (ALT),aspartate transaminase (AST),total bilirubin (TBil),creatinine (Cr),blood urea nitrogen (BUN),acute gastrointestinal injury (AGI) grade,gastrointestinal dysfunction score (GDS),serum intestinal fatty acid-binding protein (iFABP), citrulline (CR),platelet (PLT),prothrombin time(PT),activated partial thromboplastin time (APTT),fibrinogen (Fib),international normalized ratio (INR),and D-dimer (D-D). ResultsThere was no significant difference between the two groups regarding 28-day all-cause mortality. After the intervention,SOFA,WBC,PCT,and Cr were significantly decreased, and PLT was significantly increased in the control group (P<0.05). SOFA,APACHE Ⅱ,NEU%,CRP,PCT,ALT,AST,Cr,BUN,AGI grade,GDS,and serum iFABP and CR were significantly improved in the observation group (P<0.05). After the intervention,APACHE Ⅱ,PCT,AGI grade,GDS,and serum iFABP in the observation group were significantly lower than those in the control group ,while CR and PLT were higher (P<0.05,P<0.01). There were significant differences regarding the gap of SOFA,APACHE Ⅱ,AST,TBil,AGI grade,GDS,iFABP,CR, and PLT between the two groups (P<0.05,P<0.01). There were slight differences regarding PT,APTT,Fib,INR,and D-D between the two groups,which were in the clinical normal range. ConclusionOn the basis of Western medicine, DCH helped to reduce sepsis severity and improved multiple organ dysfunction with high clinical efficacy and safety, but further research on its impact on the prognosis of patients with sepsis is still required.
2.Xiaoyaosan Regulates HPT Axis in Rat Model with Syndrome of Liver Depression and Spleen Deficiency via CGA/GPX2/TSHβ Pathway for Thyroid Hormone Synthesis
Fang WANG ; Ruxin YUAN ; Lingjin FAN ; Zongli CHEN ; Huaye XIAO ; Liqiang YANG ; Xiaohong LI ; Chuncheng ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):1-10
ObjectiveTo explore the mechanism by which Xiaoyaosan regulates HPT axis dysfunction in the rat model with the syndrome of liver depression and spleen deficiency by observing its effect on the glycoprotein hormone α-subunit (CGA)/glutathione peroxidase 2 (GPX2)/thyroid-stimulating hormone β-subunit (TSHβ) pathway for thyroid hormone synthesis. MethodsSeventy-two male SD rats were randomized into six groups: normal, model, high-dose (16.7 g·kg-1), medium-dose (8.35 g·kg-1), and low-dose (4.175 g·kg-1) Xiaoyaosan, and fluoxetine (0.001 8 g·kg-1) groups, with 12 rats in each group. The rat model of liver depression and spleen deficiency was induced by chronic restraint stress for 21 days. The intervention groups were treated with Xiaoyaosan decoctions or fluoxetine suspension, respectively. After modeling, hematoxylin-eosin staining was employed to observe morphological changes in the thyroid and pituitary tissue of the rats. Serum levels of triiodothyronine (T3), tetraiodothyronine (T4), and thyroid-stimulating hormone (TSH) were measured by enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of TSH receptor (TSHR) in the thyroid tissue, thyrotropin-releasing hormone receptor (TRHR) and TSHβ in the pituitary tissue, and thyrotropin-releasing hormone (TRH), CGA, GPX2, and TSHβ in the hypothalamic tissue. ResultsCompared with the normal group, the model group showed significant atrophy and irregularity of thyroid follicles, a marked reduction in colloid secretion, extensive vacuolar degeneration of adenocytes in the anterior pituitary, lowered serum levels of T3, T4, and TSH (P<0.01), and down-regulated mRNA and protein levels of TSHR in the thyroid tissue, TRHR and TSHβ in the pituitary tissue, and TRH, CGA, GPX2, and TSHβ in the hypothalamic tissue (P<0.01). Compared with the model group, high- and medium-dose Xiaoyaosan and fluoxetine alleviated the pathological changes in the thyroid and pituitary tissue, outperforming the low-dose Xiaoyaosan group. Moreover, they elevated the serum levels of T3, T4, and TSH (P<0.05, P<0.01). The serum TSH level was also elevated in the low-dose Xiaoyaosan group (P<0.05). The mRNA and protein levels of TSHR in the thyroid, TRHR and TSHβ in the pituitary, and TRH, CGA, GPX2, and TSHβ in the hypothalamus were up-regulated in the high- and medium-dose Xiaoyaosan groups (P<0.05, P<0.01). Additionally, the mRNA and protein levels of TSHβ in the hypothalamus were up-regulated in the low-dose Xiaoyaosan group (P<0.01). In the fluoxetine group, the mRNA and protein levels of TSHR in the thyroid, TRHR in the pituitary, and TRH, CGA, and GPX2 in the hypothalamus were up-regulated (P<0.05, P<0.01). ConclusionThe downregulation of CGA/GPX2/TSHβ pathway may be one of the biological mechanisms underlying HPT axis dysfunction in the rat model with the syndrome of liver depression and spleen deficiency. Xiaoyaosan may regulate the HPT axis dysfunction by up-regulating the CGA/GPX2/TSHβ pathway.
3.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
4.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
5.Health risk assessment of fluoride and trichloromethane in drinking water in rural schools in Guizhou Province
JIAN Zihai, ZHANG Jianhua, SU Minmin, CHEN Xuanhao, YUAN Minlan, YANG Dan, CHEN Gang
Chinese Journal of School Health 2025;46(1):134-137
Objective:
To analyze the distribution characteristics of fluoride and trichloromethane in drinking water in rural schools in Guizhou Province and assess their health risks, so as to provide a scientific basis for ensuring the safety of drinking water in rural schools.
Methods:
During the dry season (March to May) and wet season (July to September) of 2020 to 2022, 788 rural primary and secondary schools in agricultural counties (districts) in Guizhou Province were selected for investigation by using a direct sampling method. A total of 1 566 drinking water samples were collected from these schools, and the mass concentrations of fluoride and trichloromethane in the water samples were detected. The Mann-Whitney U test was used for intergroup comparison, and a health risk assessment model was employed to evaluate the health risks of students oral intake of fluoride and trichloromethane.
Results:
From 2020 to 2022, the mass concentrations of fluoride and trichloromethane in the drinking water of rural schools in Guizhou Province all met the standards, and the ranges were no detection to 0.99 mg/L and (no detection to 0.06)×10 -3 mg/L, respectively. The mass concentrations of fluoride in dry and wet seasons were 0.05(0.05,0.10), 0.05(0.05,0.10) mg/L, the mass concentrations of trichloromethane were [0.02(0.02,1.00)]×10 -3 , [0.02(0.02,1.00)]×10 -3 mg/L, the mass concentrations of fluoride in factory water and terminal water were 0.05(0.05,0.05), 0.05(0.05,0.10) mg/L, and the differences were not statistically significant ( Z=-0.04, -0.88, - 0.98 , P >0.05). There was a statistically significant difference in the mass concentration of trichloromethane between factory water and peripheral water [0.02(0.02,0.02)×10 -3 , 0.02(0.02,1.05)×10 -3 mg/L]( Z=-2.16, P < 0.05 ). The non-carcinogenic risk assessment values for students oral exposure to fluoride and trichloromethane were in the range of 0.01(0.01,0.03)-0.03(0.03,0.06) and [0.26( 0.26 ,14.54)]×10 -4 -[0.52(0.52,48.62)]×10 -4 , respectively, all of which were at acceptable levels; the carcinogenic risk assessment values for oral exposure to trichloromethane were in the range of [0.08(0.08, 4.51 )]×10 -7 -[0.16(0.16,15.07)]×10 -7 , indicating a low risk.
Conclusions
The health risks of students expore to fluoride and trichloromethane in drinking water in rural schools of Guizhou Province are low. It is necessary to strengthen the standardized management of disinfection in some rural drinking water projects and the monitoring of fluoride in water sources to reduce the exposure risk to children.
6.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
7.Effect and mechanism of Sanqi danshen tablets in the treatment of non-alcoholic fatty liver disease
Yutian LEI ; Dan FENG ; Xinli CHEN ; Yuan YANG ; Hui WU
China Pharmacy 2025;36(6):674-679
OBJECTIVE To investigate the potential mechanism of Sanqi danshen tablets in the treatment of non-alcoholic fatty liver disease (NAFLD). METHODS Core targets of Sanqi danshen tablets in the treatment of NAFLD were explored by network pharmacological methods. Gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also performed. Based on the results obtained from network pharmacological studies, using SD rats as subjects, the NAFLD model was induced by feeding them high-fat diet. The effects of Sanqi danshen tablets on pathological changes such as lipid droplet vacuoles and lipid accumulation in the liver tissue of NAFLD rats, as well as its impact on relative indicators of lipid metabolism, inflammatory responses and oxidative stress, were investigated. RESULTS A total of 20 core targets for the treatment of NAFLD with Sanqi danshen tablets were screened, primarily involved in GO functions such as biological regulation, cellular membrane and binding, and enriched in signaling pathways related to inflammatory responses, oxidative stress and lipid metabolism. Compared with the model group, lipid droplet vacuoles were reduced significantly in low-dose, medium-dose, high-dose groups of Sanqi danshen tablets and positive control (simvastatin) group, the number of lipid droplets decreased significantly and the color became lighter. The contents of total cholesterol, triglyceride (except for medium- dose group of Sanqi danshen tablets), aspartate transaminase, alanine transaminase, tumor necrosis factor-α (except for low-dose group of Sanqi danshen tablets), interleukin-17 (except for Sanqi danshen tablets groups) and malondialdehyde (except for low- dose group of Sanqi danshen tablets) in liver tissue were significantly decreased, while the content of superoxide dismutase was significantly increased (P<0.01 or P<0.05). CONCLUSIONS Sanqi danshen tablets exert anti-inflammatory, antioxidant and lipid metabolism regulating effects by influencing the levels of inflammation, oxidative stress and lipids metabolism-related indicators, thereby improving NAFLD in rats.
8.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
9.Review on alcohol exposure associated embryonic stem cell differentiation mechanisms
Jing GAO ; Bingchun LIU ; Hong CHEN ; Peixin XU ; Xin GUO ; Jianlong YUAN ; Yang LIU
Journal of Environmental and Occupational Medicine 2025;42(5):637-643
Alcohol exposure, as a widespread environmental factor, is highly toxic and teratogenic. Embryonic stem cells (ESCs) are pluripotent and key to development, and their gene expression is tightly regulated, allowing the cells to differentiate without self-renewal. Numerous studies showed that alcohol is an important factor affecting the differentiation of ESCs. In this paper, we systematically summarized four major molecular mechanisms underlying alcohol associated differentiation of ESCs: (1) inhibition of the Wnt signaling pathway; (2) restriction of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway; (3) alteration of the expression of pluripotent transcription factors; and (4) activation of the nuclear transcriptional program. Through the above mechanisms, alcohol induces aberrant expression of differentiation-related genes and alters the direction of cellular differentiation towards specific lineages, thereby affecting normal embryonic development. Based on the studies on ESCs modeling and other in vitro and in vivo differentiation experiments, the molecular basis of how alcohol affects differentiation by interfering with signaling networks and transcriptional regulation was elucidated, and the results of current research in this field were also summarized, which is crucial for understanding alcohol-mediated toxic effects.
10.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.


Result Analysis
Print
Save
E-mail