1.Quality Evaluation of Naomaili Granules Based on Multi-component Content Determination and Fingerprint and Screening of Its Anti-neuroinflammatory Substance Basis
Ya WANG ; Yanan KANG ; Bo LIU ; Zimo WANG ; Xuan ZHANG ; Wei LAN ; Wen ZHANG ; Lu YANG ; Yi SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):170-178
ObjectiveTo establish an ultra-performance liquid fingerprint and multi-components determination method for Naomaili granules. To evaluate the quality of different batches by chemometrics, and the anti-neuroinflammatory effects of water extract and main components of Naomaili granules were tested in vitro. MethodsThe similarity and common peaks of 27 batches of Naomaili granules were evaluated by using Ultra performance liquid chromatography (UPLC) fingerprint detection. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the content of the index components in Naomaili granules and to evaluate the quality of different batches of Naomaili granules by chemometrics. LPS-induced BV-2 cell inflammation model was used to investigate the anti-neuroinflammatory effects of the water extract and main components of Naomaili granules. ResultsThe similarity of fingerprints of 27 batches of samples was > 0.90. A total of 32 common peaks were calibrated, and 23 of them were identified and assigned. In 27 batches of Naomaili granules, the mass fractions of 14 components that were stachydrine hydrochloride, leonurine hydrochloride, calycosin-7-O-glucoside, calycosin,tanshinoneⅠ, cryptotanshinone, tanshinoneⅡA, ginsenoside Rb1, notoginsenoside R1, ginsenoside Rg1, paeoniflorin, albiflorin, lactiflorin, and salvianolic acid B were found to be 2.902-3.498, 0.233-0.343, 0.111-0.301, 0.07-0.152, 0.136-0.228, 0.195-0.390, 0.324-0.482, 1.056-1.435, 0.271-0.397, 1.318-1.649, 3.038-4.059, 2.263-3.455, 0.152-0.232, 2.931-3.991 mg∙g-1, respectively. Multivariate statistical analysis showed that paeoniflorin, ginsenoside Rg1, ginsenoside Rb1 and staphylline hydrochloride were quality difference markers to control the stability of the preparation. The results of bioactive experiment showed that the water extract of Naomaili granules and the eight main components with high content in the prescription had a dose-dependent inhibitory effect on the release of NO in the cell supernatant. Among them, salvianolic acid B and ginsenoside Rb1 had strong anti-inflammatory activity, with IC50 values of (36.11±0.15) mg∙L-1 and (27.24±0.54) mg∙L-1, respectively. ConclusionThe quality evaluation method of Naomaili granules established in this study was accurate and reproducible. Four quality difference markers were screened out, and eight key pharmacodynamic substances of Naomaili granules against neuroinflammation were screened out by in vitro cell experiments.
2.Identification of Chemical Constituents of Painong Powder and Constituents Absorbed into Blood by UHPLC-Q-Orbitrap-MS
Han SUN ; Hongsu ZHAO ; Zihua XUAN ; Jinwei QIAO ; Fangfang ZHANG ; Manqin YANG ; Shuangying GUI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):256-263
ObjectiveTo study the chemical constituents of Painong powder and the constituents absorbed into blood after oral administration to rats by ultra performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-MS). MethodsUPLC-Q-Orbitrap-MS was employed for mass spectrometry data acquisition. The chemical constituents of Painong Powder and the constituents absorbed into blood were characterized and identified via Xcalibur 4.2 and Compound Discoverer v3.3.1 (CD) based on retention time, accurate molecular weights, secondary fragmentation ions, and comparison with reference standards and literature reports. ResultsA total of 176 chemical compounds, including 56 flavonoids, 42 triterpenoid saponins, 23 monoterpenes, 7 coumarins, 5 tannins, and other 43 compounds were identified from Painong powder. 49 components were identified in the rat plasma after oral administration of Painong powder, including 33 prototype constituents and 16 metabolites. The major metabolic pathways included hydrolysis in phase Ⅰ metabolic reactions, as well as methylation, sulfation, and glucuronidation in phase Ⅱ metabolic reaction. ConclusionThe method comprehensively identified the chemical constituents of Painong powder both in vitro and in vivo, and may provide a reference for the study of quality control and clinical applications.
3.Study on the predictive model for the efficacy of neurokinin-1 receptor antagonists combined with 5-hydroxytryp-tamine 3 receptor antagonists and dexamethasone for preventing nausea and vomiting induced by highly emetogenic chemotherapy
Jingyue ZHANG ; Hanxu ZHANG ; Chong YANG ; Yinjuan SUN ; Diansheng ZHONG ; Linlin ZHANG ; Hengjie YUAN
China Pharmacy 2026;37(2):220-225
OBJECTIVE To construct a predictive model for evaluating the efficacy of a triple antiemetic regimen (neurokinin- 1 receptor antagonist+5-hydroxytryptamine 3 receptor antagonist+dexamethasone) for preventing nausea and vomiting induced by highly emetogenic chemotherapy (HEC) based on interpretable deep learning algorithms. METHODS Clinical data of cancer patients who received HEC and were treated with the standard triple antiemetic regimen in the oncology department of Tianjin Medical University General Hospital from January 2018 to December 2022 were collected retrospectively. Demographic, clinical and metabolism-related variables were integrated. After data pre-processing, two deep learning algorithms (deep random forest and dense neural network) and four machine learning algorithms (support vector machine, categorical boosting, random forest and decision tree) were used to build predictive models. Subsequently, model performance evaluation and model interpretability analysis were conducted. RESULTS Among the six candidate models, the deep random forest model demonstrated the best predictive performance on the test set, with an area under the receiver operating characteristic curve of 0.850, an accuracy of 0.911, a precision of 0.805, a recall of 0.783, an F1 score of 0.793, and a Brier score of 0.075. Interpretability analysis revealed that creatinine clearance rate (Ccr) was the key predictive factor, and low Ccr levels, female gender, younger age, highly emetogenic drugs (particularly cisplatin-containing chemotherapy regimens), and anticipatory nausea and vomiting were positively correlated with the risk of HEC-related nausea and vomiting. CONCLUSIONS The deep random forest model exhibits the best performance in predicting the efficacy of triple antiemetic regimen for preventing HEC-related nausea and vomiting. The key predictors in this model primarily include Ccr,anticipatory nausea and vomiting, gender, age, and highly emetogenic drugs.
4.Treating diabetic kidney disease based on "using bitter herbs to nourish or purge" theory
Weimin JIANG ; Yaoxian WANG ; Shuwu WEI ; Jiale ZHANG ; Chenhui XIA ; Jie YANG ; Liqiao SUN ; Xinrong LI ; Weiwei SUN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):1-7
The Huangdi Neijing proposes the " using bitter herbs to nourish or purge" theory to guide clinical prescription and formulation of herbal remedies based on the physiological characteristics and functions of the five zang viscera, along with the properties and flavors of medicinal herbs. This study explored diabetic kidney disease pathogenesis and treatment based on the " using bitter herbs to nourish or purge" theory. Kidney dryness is a key pathological factor in diabetic kidney disease, and the disharmony of kidney dryness is an essential aspect of its pathogenesis. Strengthening is the primary therapeutic principle, and kidney dryness is a persistent factor throughout the occurrence and progression of diabetic kidney disease. In the early stage, the pathogenesis involves heat-consuming qi and injuring yin, leading to kidney dryness. In the middle stage, the pathogenesis manifests as qi deficiency and blood stasis in the collaterals, resulting in turbidity owing to kidney dryness. In the late stage, the pathogenesis involves yin and yang deficiency, with kidney dryness and disharmony. This study proposes the staging-based treatment based on the " need for firmness" characteristic of the kidney. The aim is to provide new insights for clinical diagnosis and treatment in traditional Chinese medicine by rationally using pungent, bitter, and salty medicinal herbs to nourish and moisturize the kidney. This approach seeks to promote precise syndrome differentiation and personalized treatment for different stages of diabetic kidney disease, thereby enhancing clinical efficacy.
5.Discussion of sequential diagnosis and treatment model of diabetes mellitus of spatiotemporal syndrome differentiation from the perspective of qi, blood, and fluid
Jinhao HU ; Guiyan SUN ; Yufeng YANG ; Yan SHI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):8-13
The dysfunction of qi, blood, and fluid underlies the pathology of diabetes mellitus. The symptoms, signs, and physical and chemical indexes of diabetes mellitus patients reflect the duration, degree, primary and secondary pathological state of the abnormal metabolism of qi, blood, and fluid. It is necessary to construct a three-dimensional syndrome differentiation system of diabetes mellitus based on spatial and temporal dimensions. According to the four stages of depression, heat, deficiency, and damage, the location of the disease can be locked into qi, ying, and blood levels. The process reflects the pathological trend of the abnormal metabolism of qi, blood, and fluid: qi depression (prodromal stage: asymptomatic metabolic disorder/early stage of qi level) → qi heat (initial stage: index stage/late stage of qi level) → deficiency of both qi and yin (middle stage: symptom stage of three more and one less/stage of ying level) → damage of zang-fu viscera and meridians (late stage: complication stage/stage of blood level). According to the time process, the treatment principles are proposed as follows: during the early stage of qi level, treatment should focus on strengthening the spleen to regulate qi flow, to prevent the accumulation of glucose; during the late stage of qi level, treatment should focus on clearing heat and resolving turbidity, to remove the stagnated heat caused by glucose; during the stage of ying level, treatment should focus on benefiting qi and nourishing yin, to improve the symptoms about deficiency of both qi and yin; during the stage of blood level, treatment should focus on promoting blood circulation and removing blood stasis, to remove the complication. According to the etiology and pathogenesis of diabetes mellitus, the sequential treatment strategy is thus proposed, which is strengthening the spleen to regulate qi flow, clearing heat and resolving turbidity, benefiting qi and nourishing yin, and promoting blood circulation and removing blood stasis. The compound prescriptions such as Houpo Sanwu Decoction, Baihu Jia Renshen Decoction, Danggui Liuhuang Decoction, and Taohong Siwu Decoction are used with modification in the stage-based treatment.
6.Correlation between driver gene mutation and environmental exposure factors in patients with non-small cell lung cancer in Xi'an City
Yang HU ; Qianrong WANG ; Mengxue WANG ; Na CHENG ; Meijuan WU ; Xianna WU ; Juanhua SUN
Journal of Public Health and Preventive Medicine 2025;36(1):114-117
Objective To understand the driver gene mutation status in patients with non-small cell lung cancer (NSCLC) in Xi'an City, and to analyze the association with environmental exposure factors. Methods A total of 305 NSCLC patients admitted to the First Affiliated Hospital of the Air Force Medical University from January 2019 to December 2023 were included. The driver gene mutation status was observed, and the relationship with environmental exposure factors was analyzed. Results The driver gene mutation rate of 305 patients was 46.89%, with EGFR gene mutation accounting for the highest proportion, and 4 cases of gene co-mutations were detected. There was a difference in gender among patients with different single drive gene mutations (P<0.05), and the proportion of EGFR in women was significantly higher (P<0.05). Univariate analysis showed that there were statistical differences in family history, smoking history, long-term cooking history, and fried smoked food intake between patients with driver gene mutation and patients without driver gene mutation (P<0.05). Logistic regression analysis suggested that long-term cooking history (OR=2.392), and fried smoked food intake (OR=2.849) were the environmental exposure factors affecting EGFR gene mutation (P<0.05), and smoking history (OR=1.377) was an environmental exposure factor of KRAS gene mutation (P<0.05). Conclusion EGFR gene mutation accounts for the highest proportion of NSCLC patients in Xi'an City, and is mainly female. Long-term cooking history, and fried smoked food intake are related to EGFR gene mutation. There is a certain association between smoking history and KRAS gene mutation.
7.Role of Macrophage Activation and Polarization in Diabetes Mellitus and Its Related Complications and Traditional Chinese Medicine Intervention
Zhichao CHEN ; Qiaoni LIN ; Liya SUN ; Jinxi WANG ; Zishan FU ; Yufeng YANG ; Yan SHI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):311-320
The occurrence of diabetes mellitus (DM) is closely related to insulin resistance and islet β cell dysfunction. Modern studies have found that macrophages are widely present in the liver,fat,skeletal muscle,islets, and other tissues and organs. Macrophage M1/M2 polarization plays an important role in the occurrence and development of diabetes mellitus and its related complications by intervening in inflammatory response,improving insulin resistance,and promoting tissue repair. Most of the traditional Chinese medicines that regulate the activation and polarization of macrophages are Qi-replenishing and Yin-nourishing,heat-clearing, and detoxicating medicinal,which are consistent with the etiology and pathogenesis of diabetes and its related complications. Therefore,by summarizing the mechanisms between macrophage activation,polarization, and insulin resistance in various tissues,this paper reviewed traditional Chinese medicine and its effective components and compounds in improving diabetes mellitus and its related complications through multi-channel regulation of macrophage polarization and regulation of M1/M2 ratio,providing references for the future treatment of DM and its related complications with traditional Chinese medicine.
8.Extraction process optimization and quality control of Xuetong capsules
Fangjian CHEN ; Juanjuan ZHAO ; Kanti YE ; Yuxin SUN ; Jiyong LIU ; Jun YANG
Journal of Pharmaceutical Practice and Service 2025;43(2):82-86
Objective To optimize the extraction process of Xuetong capsules and establish its quality control method. Methods The extraction process was optimized by orthogonal experiment using ethanol reflux method to investigate the effects of different factors on diphenylstilbene, aloin and extraction yield. The content of 5 anthraquinone compounds in Xuetong capsule was determined by HPLC. Results The optimal extraction process was to add 10 times ethanol, with an ethanol concentration of 70%, and extract 3 times, each time for 1 h; 5 components had a good linear relationship with peak area within a certain concentration range, r>0.999 7; The range of sample recovery rate was 93.66%-96.85%, RSD range of 1.48%-1.66%. The content determination results of the 5 components in three batches of Xuetong capsules were (0.632-0.641), (0.660-0.681), (1.968-1.991), (2.547-2.580), and (1.076-1.101) mg/g. Conclusion The method was accurate, reproducible, and highly feasible, which could be references for producing and improving the quality control standards of Xuetong capsules.
9.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
10.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.


Result Analysis
Print
Save
E-mail