1.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
4.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
5.Herbal Textual Research on Dioscoreae Hypoglaucae Rhizoma, Dioscoreae Spongiosae Rhizoma, Smilacis Chinae Rhizoma and Smilacis Glabrae Rhizoma in Famous Classical Formulas
Li LU ; Yichen YANG ; Erhuan WANG ; Hui CHANG ; Li AN ; Shibao WANG ; Cunde MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):218-247
This article systematically reviews and verifies the medicinal materials of Dioscoreae Hypoglaucae Rhizoma(DHR), Dioscoreae Spongiosae Rhizoma(DSR), Smilacis Chinae Rhizoma(SCR) and Smilacis Glabrae Rhizoma(SGR) from the aspects of name, origin, producing area, quality, harvesting, processing and efficacy by consulting historical literature, in order to provide reference for the development and utilization of famous classical formulas containing the four medicinal materials. DHR, DSR, SCR and SGR have a long history of application as medicinal materials. However, due to their similar growth environment and medicinal properties, as well as their functions of promoting dampness, dispelling wind and removing numbness, there have been instances of homonymous foreign objects and homonymous synonyms throughout history, resulting in confusion of the origin. Therefore, it is necessary to conduct comparative analysis and systematic research for clarifying the historical development and changes of the four, in order to provide a basis for safe and effective medication. According to research, Bixie was first recorded in Shennong Bencaojing and has been historically known as Baizhi, Chijie, Zhumu, and other aliases. From ancient times to the mid-20th century, there has always been a situation where the rhizomes of Dioscorea plants and Smilax plants, and even the rhizomes of Heterosmilax plants, were mixed together to be used as medicinal herbs for Bixie. However, since the Tang dynasty, it has been clearly advocated that the rhizomes of Dioscorea plants have excellent quality and have been the mainstream throughout history. The 2020 edition of Chinese Pharmacopoeia categorized it into two types of medicinal herbs(DHR and DSR). Among them, the origin of DHR is the dry rhizomes of Dioscorea hypoglauca, and the origins of DSR are the dry rhizomes of D. spongiosa and D. futschauensis. In ancient times, due to different types, the corresponding production areas of DHR and DSR were also different. Nowadays, They are mainly produced in the southern region of the Yangtze River. Since the Tang dynasty, the quality of Bixie has been characterized by its white color and soft nature. In modern times, it has been summarized that those with white color, large and thin pieces, powdery texture, tough and elastic texture, and neat and unbreakable are the best. The harvesting times of DHR and DSR are in spring or autumn, with the best quality harvested in autumn. The mainstream processing methods of them are slicing and then using the raw products or wine-processed products. SCR was first recorded in Mingyi Bielu and has been known as Jinganggen, Tielingjiao, Tieshuazi, and other aliases in history. The mainstream source is the dry rhizomes of Smilax china in the past dynasties, with the best quality being those that are tough and rich in powder. The harvesting time is from the late autumn to the following spring, and the main processing method throughout history has been slicing for raw use. SGR was first recorded under the item of Yuyuliang in Variorum of Shennong's Classic of Materia Medica. It was listed as an independent medicinal material from Bencao Gangmu. In history, there were such aliases as Cao Yuyuliang, Lengfantuan, Xianyiliang, Tubixie, etc. The main source of the past dynasties was dry rhizomes of S. glabra. In history, there have also been instances of multiple plants belonging to the same genus, and even cases of mixing the rhizomes of plants in the genus Heterosmilax. It is mainly produced in Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Anhui and other regions, its quality has been summarized as large in size, powdery in texture, with few veins, and light brown in cross-section since modern times. The harvesting time is in spring or autumn, and the main processing method throughout history has been slicing for raw use. DHR, DSR, SCR and SGR all have the effects of promoting dampness, dispelling wind, relieving rheumatism and detoxifying. However, their detoxification abilities are ranked as follows:SGR>SCR>Bixie(DHR and DSR). Especially for the treatment of limb spasms, arthralgia and myalgia, scrofula, and scabies caused by syphilis and mercury poisoning, SGR has a unique effect. Based on the research results, DHR is recommended to develop the famous classical formulas containing Bixie as the first choice for medicinal herbs. It should be harvested in autumn, sliced thinly while fresh, and processed according to the requirements of the famous classical formulas, without any requirements for raw use. Selecting the rhizomes of S. china, harvested in late autumn, and thinly sliced while fresh. If there are no special processing requirements in the formulas, use it raw. Selecting the rhizomes of S. glabra, it is harvested in autumn and thinly sliced while fresh. If there are no special processing requirements in the formulas, raw products can be used.
6.GAO Shuzhong's Experience in Treating Idiopathic Tinnitus with Combination of Acupuncture and Chinese Materia Medica
Pengfei WANG ; Yiyang SUN ; Xiaoyan LI ; Wenli YAN ; Ningning MENG ; Guirong YANG ; Yuxia MA
Journal of Traditional Chinese Medicine 2025;66(3):233-237
To summarize Professor GAO Shuzhong's clinical experience in treating idiopathic tinnitus with a combination of acupuncture and Chinese meteria medica. It is believed that idiopathic tinnitus is mostly caused by weak lungs and spleen, kidney essence deficiency, liver constraint transforming into fire, and binding constraint of heart qi. Treatment advocates the combination of acupuncture and Chinese meteria medica in clinical practice. Acupuncture treatment mainly focus on the method of opening the orifices by syndrome identification in combination with Ermen (TE 21), Tinggong (SI 19), Tinghui (GB 2), Shenmai (BL 62) to regulate qi and blood, and supporting with Baihui (GV 20), Yintang (EX-HN 3), Taichong (LR 3), and Yanglingquan (GB 34) to soothe the liver, resolve constraint, and calm the mind. Oral administration of Chinese medicinal prescription usually includes modified Yiqi Congming Decoction (益气聪明汤) and Tongqi Powder (通气散), and the external administration of Chinese medicinal prescription can apply self-prescribed Wenqing Powder (温清散) to navel moxibustion.
7.Optimization of temperature parameters for screening unexpected antibodies in Rh system by manual polybrene test
Xin ZOU ; Minjie CHEN ; Sifei MA ; Hongmei YANG
Chinese Journal of Blood Transfusion 2025;38(1):97-100
[Objective] To explore the temperature parameters affecting the polybrene test and determine the optimal temperature conditions for detecting unexpected antibodies of the Rh system. [Methods] The reaction of IgG human anti-D antibody with different dilutions (undiluted, 1∶2, 1∶4, 1∶8, 1∶16, 1∶32,1∶64) with D antigen-positive red blood cells was detected by manual polybrene test (MPT). Different temperatures (25℃ and 37℃) were set, and the reaction time with low ionic medium was 4 minutes. The agglutination integral value of anti-D and red cell depolymerization time were compared to observe the effect of enhanced agglutination reaction, thereby establishing the test temperature reaction conditions for enhancing the MPT. The same reaction condition was applied to 36 blood samples containing unexpected antibodies of the Rh system, and the effect of enhanced MPT was observed in comparison with the polybrene method and the antiglobulin test (column agglutination). [Results] With all other conditions held constant, when low ionic medium was added, the incubation temperature of 25℃ and 37℃ resulted in different total agglutination integral values for anti-D (20.9±2.025 vs 25.5±2.635), and the comparison showed a significant difference (P<0.05). When the antibody dilution was 1∶16, the incubation temperature of 25℃ and 37℃ resulted in different agglutination integral values (3.9±0.738 vs 5.8±0.632), and the comparison showed a significant difference (P<0.05). Erythrocyte depolymerization time (62.8±8.149 vs 90.1±10.713) was significantly different (P<0.05). At a dilution of 1∶32, the incubation temperatures of 25℃ and 37℃ resulted in different agglutination integral values (2.5±0.527 vs 4.3±0.675), as well as different red blood cell dissociation times (35.4±7.792 vs 57.4±10.885)(P<0.05), and the comparison showed a significant difference (P<0.05), with no differences observed in the other groups. In the detection of 36 Rh system unexpected antibody samples, when the antibody titer was ≤2, the enhanced polybrene method had a higher positive rate, and when the antibody titer was ≥4, the detection rates of the three methods were consistent. [Conclusion] The reference temperature condition for the modified MPT is incubation at 37℃ for 4 min after the addition of low ionic medium. The application of this temperature condition to unexpected antibody samples of Rh system could achieve a significant enhancement effect, thereby increasing transfusion safety for the treatment of emergency patients, and is worth popularizing.
8.Construction of an artificial intelligence-driven lung cancer database
Libing YANG ; Chao GUO ; Huizhen JIANG ; Lian MA ; Shanqing LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):167-174
Objective To develop an artificial intelligence (AI)-driven lung cancer database by structuring and standardizing clinical data, enabling advanced data mining for lung cancer research, and providing high-quality data for real-world studies. Methods Building on the extensive clinical data resources of the Department of Thoracic Surgery at Peking Union Medical College Hospital, this study utilized machine learning techniques, particularly natural language processing (NLP), to automatically process unstructured data from electronic medical records, examination reports, and pathology reports, converting them into structured formats. Data governance and automated cleaning methods were employed to ensure data integrity and consistency. Results As of September 2024, the database included comprehensive data from 18 811 patients, encompassing inpatient and outpatient records, examination and pathology reports, physician orders, and follow-up information, creating a well-structured, multi-dimensional dataset with rich variables. The database’s real-time querying and multi-layer filtering functions enabled researchers to efficiently retrieve study data that meet specific criteria, significantly enhancing data processing speed and advancing research progress. In a real-world application exploring the prognosis of non-small cell lung cancer, the database facilitated the rapid analysis of prognostic factors. Research findings indicated that factors such as tumor staging and comorbidities had a significant impact on patient survival rates, further demonstrating the database’s value in clinical big data mining. Conclusion The AI-driven lung cancer database enhances data management and analysis efficiency, providing strong support for large-scale clinical research, retrospective studies, and disease management. With the ongoing integration of large language models and multi-modal data, the database’s precision and analytical capabilities are expected to improve further, providing stronger support for big data mining and real-world research of lung cancer.
9.Analysis of plasma metabonomic characteristics of type 2 diabetes mellitus patients with turbid toxin accumulation syndrome
Ziqi ZHAO ; Pai PANG ; Yue REN ; Bin WANG ; Yuntao MA ; Qianjing YANG ; Shentao WU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):34-42
Objective:
To explore the plasma metabonomic characteristics of patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome.
Methods:
One hundred and three patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome were enrolled from November 2023 to February 2024 in the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and 54 healthy individuals were recruited. The general data of the two groups were analyzed, and the plasma metabolite content was detected using ultra-high performance liquid chromatography-Orbitrap mass spectrometry. Construct an orthogonal partial least squares discriminant analysis model to screen metabolites with significant intergroup changes. The variable importance in projection≥ 1, |log2FC|>1, and P<0.05 were used as the criteria for the screening of differential metabolites. Annotate differential metabolites using internal databases and the human metabolome database, and perform pathway analysis using MetaboAnalyst website.
Results:
There was no statistically significant difference in gender and age between the two groups.Seventeen potential differential metabolites were identified. The D-4′-phosphopantothenate, 2, 6-dichloroindophenol, 4-methylphenol, hypoxanthine, 11, 12-epoxyeicosatrienoic acids, oleamide, 3-phenyllactic acid contents were higher in patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome than in healthy individuals(P<0.05); 3-anisic acid, 3-iodo-octadecanoic acid, mebendazole, β-alanine, citric acid, trans-aconitic acid, geranyl diphosphate, lysophosphatidylcholine(18∶2), phosphatidylethanolamine(18∶1), and caprolactam contents were lower in patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome than in healthy individuals(P<0.05). Ten metabolic pathways were identified, including the key metabolic pantothenate and coenzyme A biosynthesis pathways.
Conclusion
Metabolic differences were observed between patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome and healthy individuals, and the underlying mechanism may involve the pantothenate and coenzyme A biosynthesis pathways, jointly mediated by D-4′-phosphopantothenate and β-alanine.
10.UPLC-Q-TOF-MS Reveals Mechanisms of Modified Qing'e Formula in Delaying Skin Photoaging and Regulating Circadian Rhythm
Wanyu YANG ; Xiujun ZHANG ; Yan WANG ; Chunjing SONG ; Haoming MA ; Lifeng WANG ; Nan LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):88-97
ObjectiveTo reveal the active substances and mechanisms of modified Qing'e formula (MQEF) in delaying skin photoaging by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS),network pharmacology, and cell experiments. MethodsUPLC-Q-TOF-MS and a literature review were employed to analyze the transdermally absorbed components in mice after the topical application of MQEF. The potential targets of MQEF in treating skin photoaging were retrieved from databases.The compound-potential target network and protein-protein interaction network were constructed to screen the key components and core targets. A photoaging cell model was established by irradiating HaCaT cells with medium-wave ultraviolet B (UVB). The safe doses of bakuchiol (BAK) and salvianolic acid B (SAB) for treating HaCaT cells and the effects of BAK and SAB on the viability of cells exposed to UVB irradiation were determined by the cell counting kit-8 (CCK-8) method.The reactive oxygen species (ROS) fluorescent probe was used to measure the ROS production in the cells treated with BAK and SAB.The expression levels of genes related to oxidative stress,inflammation,collagen metabolism,and circadian rhythm clock were measured by Real-time PCR. ResultsA total of 24 transdermally absorbed components of MQEF were identified,which acted on 367 potential targets,and 417 targets related to skin photoaging were screened out,among which 47 common targets were predicted as the targets of MQEF in treating skin photoaging. MQEF exerted the anti-photoaging effect via key components such as BAK and SAB,which acted on core proteins such as serine/threonine kinase 1 (Akt1) and mitogen-activated protein kinase 3 (MAPK3) and intervened in core pathways such as the tumor necrosis factor (TNF) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways.Compared with the model group,the administration of BAK and SAB increased the survival rate of HaCaT cells (P<0.01),down-regulated the mRNA levels of cyclooxygenase-2 (COX-2),interleukin-6 (IL-6),tumor necrosis factor-α (TNF-α),matrix metalloproteinase-1 (MMP-1),and matrix metalloproteinase-9 (MMP-9) (P<0.01),and up-regulated the mRNA levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO-1) (P<0.05,P<0.01) in photoaged HaCaT cells.In addition,it eliminated excess ROS production induced by UVB and up-regulated the mRNA levels of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) associated with circadian clock (P<0.05,P<0.01). ConclusionMQEF delays skin photoaging through the coordinated effects of various components,multiple targets,and diverse pathways.The key components BAK and SAB in MQEF exhibit anti-photoaging properties,which involve inhibiting oxidative stress,preventing collagen degradation,mitigating inflammation,and maintaining normal skin circadian rhythms by regulating clock gene expression.


Result Analysis
Print
Save
E-mail