1.Qishao Capsules Improve Diabetic Renal Injury in db/db Mice by Inhibiting Podocyte Apoptosis via Regulating Caspase-8 and Caspase-3
Jingwei LIU ; Zhenhua WU ; Bing YANG ; Fengwen YANG ; Miao TAN ; Tingting LI ; Jinchuan TAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):126-135
ObjectiveTo observe the effect of Qishao capsules on renal injury in db/db mice with diabetic kidney disease (DKD),and explore its mechanism of protecting the kidney by inhibiting podocyte apoptosis. Methodsdb/m mice (7 mice) were used as the normal group,and db/db mice (35 mice) were randomly divided into a model group,a dapagliflozin group (0.001 g·kg-1·d-1),and low-,medium-,and high-dose groups of Qishao capsules (0.341 3,0.682 5,and 1.365 g·kg-1·d-1,respectively). Drug intervention lasted for 8 consecutive weeks. After sampling,the serum renal function indicators [creatinine(SCr),and urea nitrogen(BUN)],fasting blood glucose (FBG),24 h urinary protein quantification (24 h-UTP), and other indicators of the mice were measured. The pathological tissue morphology of the kidney was observed by periodic acid-silver methenamine (PASM) and Masson's trichrome (Masson) staining. Immunohistochemical detection of cysteine-dependent aspartate-specific protease (Caspase)-3 and B-cell lymphoma 2 (Bcl-2) was performed. Western blot was used to detect the protein expression of Caspase-8,Caspase-7,Caspase-3, and other molecules. Terminal deoxynucleotidyl transferase dUTP nick End labeling (TUNEL) staining was used to observe apoptosis in renal tissue. Immunofluorescence staining of Wilms tumor suppressor gene-1
2.Joint Relation Extraction of Famous Medical Cases with CasRel Model Combining Entity Mapping and Data Augmentation
Yuxin LI ; Xinghua XIANG ; Hang YANG ; Dasheng LIU ; Jiaheng WANG ; Zhiwei ZHAO ; Jiaxu HAN ; Mengjie WU ; Qianzi CHE ; Wei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):218-225
ObjectiveTo address the challenges of unstructured classical Chinese expressions, nested entity relationships, and limited annotated data in famous traditional Chinese medicine(TCM) case records, this study proposes a joint relation extraction framework that integrates data augmentation and entity mapping, aiming to support the construction of TCM diagnostic knowledge graphs and clinical pattern mining. MethodsWe developed an annotation structure for entities and their relationships in TCM case texts and applied a data augmentation strategy by incorporating multiple ancient texts to expand the relation extraction dataset. A cascade binary tagging framework for relation triple extraction(CasRel) model for TCM semantics was designed, integrating a pre-trained bidirectional encoder representations from transformers(BERT) layer for classical TCM texts to enhance semantic representation, and using a head entity-relation-tail entity mapping mechanism to address entity nesting and relation overlapping issues. ResultsExperimental results showed that the CasRel model, combining data augmentation and entity mapping, outperformed the pipeline-based Bert-Radical-Lexicon(BRL)-bidirectional long short-term memory(BiLSTM)-Attention model. The overall precision, recall, and F1-score across 12 relation types reached 65.73%, 64.03%, and 64.87%, which represent improvements of 14.26%, 7.98%, and 11.21% compared to the BRL-BiLSTM-Attention model, respectively. Notably, the F1-score for tongue syndrome relations increased by 22.68%(69.32%), and the prescription-syndrome relations performed the best with the F1-score of 70.10%. ConclusionThe proposed framework significantly improves the semantic representation and complex dependencies in TCM texts, offering a reusable technical framework for structured mining of TCM case records. The constructed knowledge graph can support clinical syndrome differentiation, prescription optimization, and drug compatibility, providing a methodological reference for TCM artificial intelligence research.
3.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
4.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
5.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
6.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
7.Effect of Yifei Jianpi Prescription on Lipopolysaccharide-induced Lung Immune Inflammatory Response in Rats Based on STAT1/IRF3 Pathway
Hongjuan YANG ; Yaru YANG ; Yujie YANG ; Zhongbo ZHU ; Quan MA ; Yanlin WU ; Hongmei LI ; Xuhui ZHANG ; Xiping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):146-155
ObjectiveTo observe the effect of Yifei Jianpi prescription on the of signal transducer and activator of transcription protein 1 (STAT1)/interferon regulatory factor 3 (IRF3) signaling pathway in a pneumonia model induced by lipopolysaccharide (LPS) and to explore the mechanism of Yifei Jianpi prescription in improving lung immune and inflammatory responses. MethodsSixty male SPF SD rats were used in this study. Ten rats were randomly assigned to the normal control group, and the remaining 50 were instilled with LPS in the trachea to establish a pneumonia model. After successful modeling, the rats were randomly divided into the model group, dexamethasone group (0.5 mg·kg-1), and Yifei Jianpi prescription high-dose (12 mg·kg-1), medium-dose (6 mg·kg-1), and low-dose (3 mg·kg-1) groups, with 10 rats in each group. Treatment was administered once daily, and the normal control and model groups received the same volume of normal saline. After 14 days, flow cytometry was used to detect the classification of whole blood lymphocytes. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), and the content of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), interleukin-6 (IL-6), and interleukin-10 (IL-10) in alveolar lavage fluid (BALF). Hematoxylin-eosin (HE) staining was used to observe lung tissue pathology and score the damage. Thymus weight, spleen weight, and wet-to-dry weight ratio (W/D) were recorded. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of STAT1, IRF3, IL-6, and interferon-alpha (IFN-α) in lung tissues, while Western blot was performed to assess the protein expression of STAT1, IRF3, IL-6, and IFN-α. ResultsCompared with the normal control group, the model group showed significantly increased proportion of B lymphocytes in peripheral blood, decreased proportions of NK cells and CD4+/CD8+ (P<0.05, P<0.01), decreased serum levels of IgG and IgA, significantly increased IgM levels (P<0.01), significantly elevated content of TNF-α, IL-6, and IL-8 in BALF, and significantly decreased IL-10 levels (P<0.01). Lung tissue damage was evident, with significant increases in thymus and spleen weights and a higher W/D ratio (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly upregulated (P<0.05,P<0.01). Compared with the model group, the Yifei Jianpi prescription groups showed significantly reduced proportions of B lymphocytes in peripheral blood, increased proportions of NK cells and CD4+/CD8+ ratios (P<0.05, P<0.01), significantly increased serum levels of IgG and IgA, significantly decreased IgM levels (P<0.05, P<0.01), significantly reduced levels of TNF-α, IL-6, and IL-8 in BALF, and significantly increased IL-10 levels (P<0.01). Lung tissue damage was alleviated, thymus and spleen weights were significantly reduced, and the W/D ratio was markedly decreased (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly downregulated (P<0.05, P<0.01). ConclusionYifei Jianpi prescription can alleviate lung tissue damage and improve immune and inflammatory responses in LPS-induced pneumonia rats. The mechanism may be related to the inhibition of STAT1/IRF3 signaling pathway activation.
8.Efficacy of orthokeratology lenses in adolescent myopia patients with different diopters
Xiaojing LI ; Lingling WU ; Qianqian YANG ; Sen ZHAO ; Yun LIU ; Li MENG
International Eye Science 2025;25(1):162-165
AIM: To explore the control effects of wearing orthokeratology lens for 1 a on adolescent myopia patients with different diopters.METHODS: Prospective non-randomized controlled study. A total of 120 adolescent myopic patients(224 eyes), with an average age of 11.00±2.08 years old, who were fitted with orthokeratology lenses in the optometry department of our hospital from November 2022 to May 2023 were collected. There were 3 groups according to the spherical equivalent, including 86 eyes in the group of -0.50--2.00 D, 99 eyes in the group -2.25--4.00 D, and 39 eyes in group -4.25--6.00 D. Patients were followed up for 1 a to observe the changes of uncorrected visual acuity, axial length, corneal curvature, corneal central thickness and corneal endothelial cells density in the three groups after wearing lens for 1 a.RESULTS:A total of 113 cases(212 eyes)were followed up for 1 a, including 82 eyes in the group of -0.50--2.00 D, 95 eyes in the group of -2.25--4.00 D, and 35 eyes in the group of -4.25--6.00 D. There was no statistical difference in corneal central thickness and corneal endothelial cell density among the three groups of patients after wearing lens for 1 a(all P>0.05). Uncorrected visual acuity was significantly improved, and flat kerotometry(FK)and steep kerotometry(SK)were significantly flatter(both P<0.01). Furthermore, the growth of axial length in the three groups of patients after wearing lens for 1 a was 0.21±0.26, 0.13±0.21 and 0.09±0.10 mm, respectively(P<0.05). There were differences between the -0.50--2.00 D group and the -2.25--4.00 D group and -4.25--6.00 D group(P=0.028, 0.010), and there were no differences between the -2.25--4.00 D group and the -4.25--6.00 D group(P=0.344).CONCLUSION:It is safe and effective for young myopia patients to wear orthokeratology lenses, which can prevent the non-benign growth of the axial length and effectively delay the development of myopia, and the myopia control effect is better especially for myopia patients of above -2.0 D.
9.Disease burden of chronic kidney disease attributable to high BMI in China and trend prediction in 1992-2021
Hong LIU ; Guimao YANG ; Yan SUI ; Xia ZHANG ; Xuebing CHENG ; Yaxing WU ; Xu GUO ; Yanfeng REN
Journal of Public Health and Preventive Medicine 2025;36(1):27-31
Objective To analyze the disease burden of chronic kidney diseases (CKD) attributed to high body mass index (BMI) in China from 1992 to 2021 and predict the disease burden for the next decade, and to provide evidence for the prevention and treatment of CKD. Methods Using the Global Burden of Disease (GBD) database and the Joinpoint model, the average annual percentage rate change (AAPC) of the mortality rate and disability-adjusted life year (DALY) rate was calculated to describe and analyze the CKD disease burden attributed to high BMI in China from 1992 to 2021. The ARIMA model was employed to predict and analyze the change trend of the CKD disease burden. Results From 1992 to 2021, the mortality rate and DALY rate attributed to high BMI-induced chronic kidney disease showed an upward trend. Compared to 1992, the attributed number of deaths increased by 324.38%, and DALYs increased by 268.56%; the mortality rate increased by 64.00%, and the DALY rate grew by 51.62%. From 1992 to 2021, the mortality rate and DALY rate for males were lower than those for females, but the growth rate for males exceeded that of females. From 1992 to 2021, the mortality rate and DALY rate of chronic kidney disease attributed to high BMI in China increased with age. The average annual change rate of chronic kidney disease attributed to high BMI in China from 1992 to 2021 (mortality rate: 1.40 per 100,000 (95% CI: 1.04–1.76), DALY rate: 1.43 per 100 000 (95% CI: 1.17–1.70)) was higher than thHuaiyin Normal University, Huai'anher social demographic index (SDI) regions. The ARIMA model predicted that the age-standardized mortality rate increased from 2.91 per 100 000 in 2022 to 3.05 per 100 000 in 2026, and the age-standardized DALY rate increased from 69.65 per 100 000 in 2022 to 73.58 per 100 000 in 2026. Conclusion Chronic kidney disease attributed to high BMI in China is on the rise, and it will continue to grow in the future. The focus of CKD prevention and control should be on males and the elderly, while active measures should be taken to reduce the occurrence and progression of chronic kidney disease.
10.Impacts of corneal topography-guided phacoemulsification with transparent corneal incision on efficacy and complications of cataract patients
Fangfang WU ; Lu LU ; Wenwen WU ; Yawen LIU ; Lidong YANG
International Eye Science 2025;25(3):485-489
AIM: To investigate the effect of corneal topography-guided phacoemulsification with transparent corneal incision on cataract patients.METHODS:A total of 92 cataract patients(92 eyes)admitted to our hospital from February 2021 to February 2023 were prospectively selected and randomly divided into two groups: the control group(46 eyes)received the conventional 11:00 clear corneal incision scheme, and the study group(46 eyes)received the steepest meridian clear corneal incision scheme. The uncorrected visual acuity, corneal surface morphology indicators, including surface regularity index(SRI), surface asymmetry index(SAI), and cylinder(CYL), subjective dry eye symptoms questionnaire scoring scale(SDES), tear film break-up time(BUT), and complications were compared between the two groups.RESULTS:All patients completed the follow-up. The uncorrected visual acuity of the study group was significantly better than that of the control group at 1 wk, 1 and 3 mo after surgery(all P<0.05); there were statistical significance in the SAI and CYL of both groups of patients at 3 mo after surgery(all P<0.05); the fluctuation levels of SDES and BUT in the study group were significantly lower than those in the control group at different time points after surgery(all P<0.05); and there was no statistical difference in complications between the two groups(P>0.05).CONCLUSION:Under the guidance of corneal topography, phacoemulsification through the transparent corneal incision of the steepest meridian of the cornea can improve the uncorrected visual acuity of cataract patients, restore the corneal surface morphology, and have few complications.


Result Analysis
Print
Save
E-mail