1.Report of 4 cases of IgG4-related urinary diseases and literature review
Fanchao WEI ; Zhaoxiang WANG ; Mengwei XU ; Ruochen QI ; Guohui WANG ; Xiaoyan ZHANG ; Tong XU ; Jingliang ZHANG ; Shuaijun MA ; Weijun QIN ; Lijun YANG ; Shichao HAN
Journal of Modern Urology 2025;30(1):59-63
[Objective] To explore the clinical features of IgG4-related urinary diseases so as to provide reference for the diagnosis and treatment of such diseases. [Methods] The clinical data of 4 cases of IgG4-related urinary system diseases diagnosed and treated in Xijing Hospital of Air Force Medical University during Aug.2019 and Dec.2023 were retrospectively collected.Here, we report on the diagnosis and treatment of these patients, analysing their symptoms, serology, imaging and pathology as well as their treatment and outcomes. [Results] The patients included 2 male and 2 female.The lesions were involved with the retroperitoneum and urinary system.Three patients had symptoms of lumbar pain.The imaging manifestations were complex, including retroperitoneal mass involving urinary system organs in 2 cases, tabdense shadow of the right kidney in 1 case, and simple cystic mass of kidney in 1 case.Serum IgG4 value was not detected before surgery.All patients underwent radical surgical treatment.Postoperative pathology showed fibrous tissue hyperplasia with a large number of plasma cells, lymphocytes, a few neutrophil infiltrates, and lymphoid follicles and obliterated vasculitis in some specimens.The number of IgG4+ plasma cells was more than 10 in all tissues under high power microscope.After surgery, 3 patients had symptoms improved, and serum IgG4 value was within the normal range; 1 patient (patem 3) had elevated IgG4 value during follow-up, received subsequent hormone therapy, and the serum IgG 4 level remained stable. [Conclusion] The symptoms of IgG4-related diseases involving the urinary system are non-specific, and the imaging findings are various, easily confused with other diseases.Early detection of serum IgG4 and biopsy pathology can help clinicians make correct diagnosis in the early stage.
2.Compatibility and comfort assessment of school desks and chairs in three cities in China
Chinese Journal of School Health 2025;46(3):321-324
Objective:
To understand the subjective and objective comfort evaluations of students from different age groups on desks and chairs, so as to provide reference for standardized allocation and use of desks and chairs.
Methods:
From January to April 2024, a total of 2 446 students were selected from 26 schools in 13 districts (counties/cities) in Shanghai, Tianjin, and Wuxi from Jiangsu Province by using cluster random method, including students in kindergartens, primary schools, junior high schools,senior high schools, colleges and universities. Standardized procedures were used to measure the height and weight of participants, and the matching desks and chairs models were selected according to the height. The subjective comfort of students on matching desks and chairs was investigated, and their objective comfort was evaluated by using a self designed questionnaire. The χ 2 test was used to analyze the differences of subjective perception and objective evaluation in comfort between different types of desks and chairs.
Results:
About 84.1% of the students subjectively thought that large desks and small chairs were very comfortable or relatively comfortable, followed by large desks and chairs (75.7%), and the proportion of small desks and chairs was the lowest among the three types (46.2%), and the difference was statistically significant ( χ 2=722.46, P <0.01). The reporting rates of primary school, junior high school and senior high school students who subjectively considered large desks and chairs to be very comfortable/relatively comfortable were higher than that of other types of desks and chairs, and the differences were statistically significant ( χ 2=297.49, 252.82, 343.67, P <0.01). However, there was no significant difference in the subjective comfort evaluation of different types of desks and chairs among kindergarten children ( χ 2=3.21, P >0.05), and 66.3% of the students in colleges and universities felt very comfortable/relatively comfortable when they used the matching standard desks and chairs. The objective evaluation results of the comfort for the three types of desks and chairs were consistent with the subjective evaluation, but the proportions of the objective evaluation as very comfortable/relatively comfortable were higher than that of the subjective evaluation ( χ 2=20.76- 813.47, P <0.01).
Conclusions
Large desks and chairs, as well as large desks with small chairs are perceived comfortable, while small desks and chairs are perceived less comfortable. It is recommended to match the large desks and chairs or large desks and small chairs that are suitable for them according to the "standard", to promote physical and mental health of students.
3.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
4.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
5.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
6.Plasma exchange and intravenous immunoglobulin prolonged the survival of a porcine kidney xenograft in a sensitized, brain-dead human recipient.
Shuaijun MA ; Ruochen QI ; Shichao HAN ; Zhengxuan LI ; Xiaoyan ZHANG ; Guohui WANG ; Kepu LIU ; Tong XU ; Yang ZHANG ; Donghui HAN ; Jingliang ZHANG ; Di WEI ; Xiaozheng FAN ; Dengke PAN ; Yanyan JIA ; Jing LI ; Zhe WANG ; Xuan ZHANG ; Zhaoxu YANG ; Kaishan TAO ; Xiaojian YANG ; Kefeng DOU ; Weijun QIN
Chinese Medical Journal 2025;138(18):2293-2307
BACKGROUND:
The primary limitation to kidney transplantation is organ shortage. Recent progress in gene editing and immunosuppressive regimens has made xenotransplantation with porcine organs a possibility. However, evidence in pig-to-human xenotransplantation remains scarce, and antibody-mediated rejection (AMR) is a major obstacle to clinical applications of xenotransplantation.
METHODS:
We conducted a kidney xenotransplantation in a brain-dead human recipient using a porcine kidney with five gene edits (5GE) on March 25, 2024 at Xijing Hospital, China. Clinical-grade immunosuppressive regimens were employed, and the observation period lasted 22 days. We collected and analyzed the xenograft function, ultrasound findings, sequential protocol biopsies, and immune surveillance of the recipient during the observation.
RESULTS:
The combination of 5GE in the porcine kidney and clinical-grade immunosuppressive regimens prevented hyperacute rejection. The xenograft kidney underwent delayed graft function in the first week, but urine output increased later and the single xenograft kidney maintained electrolyte and pH homeostasis from postoperative day (POD) 12 to 19. We observed AMR at 24 h post-transplantation, due to the presence of pre-existing anti-porcine antibodies and cytotoxicity before transplantation; this AMR persisted throughout the observation period. Plasma exchange and intravenous immunoglobulin treatment mitigated the AMR. We observed activation of latent porcine cytomegalovirus toward the end of the study, which might have contributed to coagulation disorder in the recipient.
CONCLUSIONS
5GE and clinical-grade immunosuppressive regimens were sufficient to prevent hyperacute rejection during pig-to-human kidney xenotransplantation. Pre-existing anti-porcine antibodies predisposed the xenograft to AMR. Plasma exchange and intravenous immunoglobulin were safe and effective in the treatment of AMR after kidney xenotransplantation.
Transplantation, Heterologous/methods*
;
Kidney Transplantation/methods*
;
Heterografts/pathology*
;
Immunoglobulins, Intravenous/administration & dosage*
;
Graft Survival/immunology*
;
Humans
;
Animals
;
Sus scrofa
;
Graft Rejection/prevention & control*
;
Kidney/pathology*
;
Gene Editing
;
Species Specificity
;
Immunosuppression Therapy/methods*
;
Plasma Exchange
;
Brain Death
;
Biopsy
;
Male
;
Aged
7.Clinical manifestations and disease severity of multi-respiratory infectious pathogens.
Mingyue JIANG ; Yuping DUAN ; Jia LI ; Mengmeng JIA ; Qing WANG ; Tingting LI ; Hua RAN ; Yuhua REN ; Jiang LONG ; Yunshao XU ; Yanlin CAO ; Yongming JIANG ; Boer QI ; Yuxi LIU ; Weizhong YANG ; Li QI ; Luzhao FENG
Chinese Medical Journal 2025;138(20):2675-2677
8.Roles and mechanisms of TRIM family proteins in the regulation of bone metabolism.
Jing YANG ; Rui-Qi HUANG ; Ke XU ; Mian-Mian YANG ; Xue-Jie YI ; Bo CHANG ; Ting-Ting YAO
Acta Physiologica Sinica 2025;77(3):472-482
Tripartite motif-containing (TRIM) family proteins are crucial E3 ubiquitin ligases that have garnered significant attention for their regulatory roles in bone metabolism in recent years. This article reviews the function and regulatory mechanisms of TRIM family proteins in bone metabolism, focusing on their dual roles in bone formation and resorption. It also provides a detailed analysis of signaling pathways and molecular mechanisms by which TRIM family members regulate the activities of osteoblasts and osteoclasts. Research findings suggest that modulating the expression or activity of TRIM family proteins could be beneficial for treating bone diseases such as osteoporosis. This review highlights the molecular mechanisms of TRIM family members in bone physiology and pathology, aiming to provide theoretical basis and scientific guidance for developing novel therapeutic strategies for bone diseases.
Humans
;
Ubiquitin-Protein Ligases/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Tripartite Motif Proteins/physiology*
;
Osteoclasts/metabolism*
;
Osteoblasts/metabolism*
;
Signal Transduction/physiology*
;
Osteogenesis/physiology*
9.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
10.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*


Result Analysis
Print
Save
E-mail