1.Chinese expert consensus on postoperative follow-up for non-small cell lung cancer (version 2025)
Lunxu LIU ; Shugeng GAO ; Jianxing HE ; Jian HU ; Di GE ; Hecheng LI ; Mingqiang KANG ; Fengwei TAN ; Fan YANG ; Qiang PU ; Kaican CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):281-290
Surgical treatment is one of the key approaches for non-small cell lung cancer (NSCLC). Regular postoperative follow-up is crucial for early detection and timely management of tumor recurrence, metastasis, or second primary tumors. A scientifically sound and reasonable follow-up strategy not only extends patient survival but also significantly improves quality of life, thereby enhancing overall prognosis. This consensus aims to build upon the previous version by incorporating the latest clinical research advancements and refining postoperative follow-up protocols for early-stage NSCLC patients based on different treatment modalities. It provides a scientific and practical reference for clinicians involved in the postoperative follow-up management of NSCLC. By optimizing follow-up strategies, this consensus seeks to promote the standardization and normalization of lung cancer diagnosis and treatment in China, helping more patients receive high-quality care and long-term management. Additionally, the release of this consensus is expected to provide insights for related research and clinical practice both domestically and internationally, driving continuous development and innovation in the field of postoperative management for NSCLC.
2.Research progress on polysaccharides in the cell wall of Mycobacterium tuberculosis
Ming CAI ; Jing ZHOU ; Sijie YANG ; Shidong ZHAO ; Yan YIN ; Fan CHEN
Journal of Public Health and Preventive Medicine 2025;36(5):134-139
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis, which is primarily transmitted through the respiratory tract, and remains one of the diseases with the highest mortality rate of single-pathogen infections globally. The cell wall polysaccharides of M. tuberculosis are critical for maintaining bacterial structure, mediating pathogenesis, and enabling immune evasion. Lipoarabinomannan (LAM), a key polysaccharide component, has revolutionized non-invasive diagnostic technologies as a TB biomarker, while polysaccharide-based vaccines have emerged as innovative strategies for TB prevention. This review systematically examines the composition, subcellular distribution, and functional roles of M. tuberculosis cell wall polysaccharides in bacterial metabolism, drug resistance, and immune regulation. A particular emphasis is placed on recent advancements in LAM-based diagnostics and vaccine development. Future studies should utilize advanced technologies to precisely characterize the structural features of TB polysaccharides and explore their biological functions, providing a foundation for targeted diagnostic and therapeutic innovations. This article aims to provide reference for advancing both basic research and clinical applications related to M. tuberculosis.
3.An advanced machine learning method for simultaneous breast cancer risk prediction and risk ranking in Chinese population: A prospective cohort and modeling study
Liyuan LIU ; Yong HE ; Chunyu KAO ; Yeye FAN ; Fu YANG ; Fei WANG ; Lixiang YU ; Fei ZHOU ; Yujuan XIANG ; Shuya HUANG ; Chao ZHENG ; Han CAI ; Heling BAO ; Liwen FANG ; Linhong WANG ; Zengjing CHEN ; Zhigang YU
Chinese Medical Journal 2024;137(17):2084-2091
Background::Breast cancer (BC) risk-stratification tools for Asian women that are highly accurate and can provide improved interpretation ability are lacking. We aimed to develop risk-stratification models to predict long- and short-term BC risk among Chinese women and to simultaneously rank potential non-experimental risk factors.Methods::The Breast Cancer Cohort Study in Chinese Women, a large ongoing prospective dynamic cohort study, includes 122,058 women aged 25-70 years old from the eastern part of China. We developed multiple machine-learning risk prediction models using parametric models (penalized logistic regression, bootstrap, and ensemble learning), which were the short-term ensemble penalized logistic regression (EPLR) risk prediction model and the ensemble penalized long-term (EPLT) risk prediction model to estimate BC risk. The models were assessed based on calibration and discrimination, and following this assessment, they were externally validated in new study participants from 2017 to 2020.Results::The AUC values of the short-term EPLR risk prediction model were 0.800 for the internal validation and 0.751 for the external validation set. For the long-term EPLT risk prediction model, the area under the receiver operating characteristic curve was 0.692 and 0.760 in internal and external validations, respectively. The net reclassification improvement index of the EPLT relative to the Gail and the Han Chinese Breast Cancer Prediction Model (HCBCP) models for external validation was 0.193 and 0.233, respectively, indicating that the EPLT model has higher classification accuracy.Conclusions::We developed the EPLR and EPLT models to screen populations with a high risk of developing BC. These can serve as useful tools to aid in risk-stratified screening and BC prevention.
4.Drug sensitivity and genomic characteristics of a strain of Listeria monocytogenes ST5 isolated from a neonate
Zeng-Bin LIU ; Li LIU ; Zhi-Rong LI ; Cai-Hong XU ; Hong-Bin WANG ; Ru-Gang YANG ; Tao FAN ; Jian-Hong ZHAO ; Jing-Rui ZHANG
Chinese Journal of Zoonoses 2024;40(7):644-651
This study aimed to determine the drug resistance phenotype and genetic characteristics of Listeria monocytogenes ST5 LK100 isolated from a neonate,which provided a basis for the diagnosis and treatment of L.monocyto-genes infection and to enhance the understanding of the genomic characteristics of this strain.A suspected L.monocytogenes strain was isolated from the gastric juice sample of an infected neonate,and identified with a VITEK2 Compact automatic mi-crobial identification instrument and 16S RNA sequencing.Five drug sensitivity tests were conducted on the identified strain with the E-test method.Additionally,the whole genome of the strain was sequenced using a third-generation sequencing plat-form.The antibiotic resistance elements of the strain were identified by BlastN with the CARD antibiotic resistance gene data-base.The multilocus sequence typing(MLST),serotyping,and virulence genes of the strain was determined by Pasteur da-tabase,the virulence gene distribution was analyzed using the virulence analysis website.The prophages of the strain were predicted and annotate by PHASTER online website.The strain(LK100)isolated from the neonate was identified as L.monocytogenes.This strain was sensitive to penicillin,ampicil-lin,meropenem,erythromycin,and trimethoprim-sulfame-thoxazole antibiotics.The MLST type and serotype was ST5 and 1/2b-3b,respectively.The total length of the chromoso-mal genome of LK100 was 3 032 582 bp with a GC content of 37.91%,and it contained a complete circular plasmid with a se-quence length of 52 822 bp.The strain LK100 carried complete InlA protein,LIPI-1 pathogenicity island,SSI-1 stress survival island,and an LGI2 genomic island.The intrinsic antibiotic resistance genes were mainly located on the chromosome.Five prophage sequences were predicted in the LK100 genome.This study identified a strain of ST5 L.monocytogenes LK100 from an infected neonate and characterized its genome and antibiotic sensitivity,laying the foundation for further research on ST5 L.monocytogenes.
5.Rigid-body inverse dynamics modelling and analysis of 6RSS parallel bio-inspired masticatory robot
Chen CHENG ; Xiao-Jing YUAN ; Neng-Jun YANG ; Gen-Liang HOU ; Fan-Qi ZENG ; You-Cai WANG ; Wei-Peng LUO ; Guan ZHAO
Chinese Medical Equipment Journal 2024;45(3):16-22
Objective To carry out rigid-body inverse dynamics modelling and analysis of a self-designed 6RSS parallel bio-inspired masticatory robot.Methods Firstly,the functions of kinematic variables including translational/rotational velocities and accelerations were derived for rigid-body inverse dynamics modelling.Secondly,the rigid-body inverse dynamics model was established with the Newton-Euler's law.Finally,the chewing motion trajectories of the oral health volunteers were tracked and numerical calculations were carried out in the case where the robot was subjected to a chewing reaction force.Results Numerical calculations showed that the driving torque and the constraint force of the robot peaked when the chewing reaction force was at its maximum.Conclusion The external force has a large impact on the inverse dynamics of the robot,and theoretical references are provided for the motion control and optimal design of the robot.[Chinese Medical Equipment Journal,2024,45(3):16-22]
6.Application efficacy of FMEA management model-based risk assessment in prevention and control of healthcare-associated infection:a Meta-analysis
Ling CAI ; Kang-Le GUO ; Yan WANG ; Ying-Hua ZHANG ; Yu-Qing FAN ; Xiao-Hong ZHANG ; Lan-Wen HU ; Ya-Hong YANG ; Hao-Jun ZHANG
Chinese Journal of Infection Control 2024;23(11):1350-1357
Objective To systematically evaluate the application efficacy of failure mode and effect analysis(FMEA)management mode in the prevention and control of healthcare-associated infection(HAI).Methods Li-terature on the application of FMEA management mode in HAI prevention and control were retrieved from PubMed,Embase,the Cochrane Library,China National Knowledge Infrastructure(CNKI),VIP Database,Wanfang Data-base,and China Biomedical Literature Database(CBM).Two researchers independently screened the literature,ex-tracted data,and conducted cross checking.Risk and quality assessments were performed on the included studies of randomized controlled trials by ROB tool,the included cohort studies were scored by Newcastle-Ottawa(NOS)scale,and Meta-analysis was conducted by RevMan 5.4 software.Results A total of 22 studies involving 42 815 patients were included in the analysis,with 21 784 in the FMEA management mode group and 21 031 in the control group.Meta-analysis results showed that the incidence of HAI in the FMEA management mode group was lower than that in the control group(OR=0.31,95%CI[0.24,0.40]).Compared with the conventional management mode,incidences of superficial surgical site infection(OR=0.53,95%CI[0.36,0.78]),respiratory system infec-tion(OR=0.44,95%CI[0.35,0.56]),urinary system infection(OR=0.45,95%CI[0.38,0.53]),and blood system infection(OR=0.29,95%CI[0.18,0.45])in the FMEA management mode group were all lower(all P<0.01).Conclusion The application of FMEA management mode in HAI prevention and control can reduce the inci-dence of HAI,which should be actively promoted in hospital management.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Feasibility study of low tube voltage and low contrast medium combined with IMR technology in 3DCTA of vertebral artery V3 segment
Junlin YANG ; Duchang ZHAI ; Xiuzhi ZHOU ; Rong LIU ; Guohua FAN ; Wu CAI
Chongqing Medicine 2024;53(1):5-10
Objective To investigate the feasibility of low-voltage,automatic tube current adjustment(ATCM)and low contrast agent concentration,dose and injection rate combined with full-model iterative re-construction(IMR)in vertebral artery V3-segment three-dimensional CT angiography(3DCTA).Methods A total of 60 patients with suspected upper cervical spine,craniocervical junction lesions undergoing cervical vertebral artery V3 segment 3DCTA in this hospital from November 2019 to May 2020 were selected and divided into the group A and B by adopting the random number table method,30 cases in each group.The group A adopted the ATCM technology of 80 kV,average tube current of 50 mAs,25 mL of contrast agent io-hexol(iodine content 300 mg/mL)combined IMR technology with an injection rate of 3 mL/s,while the group B adopted 120 kV,150 mAs fixed tube current,50 mL injection rate of 5 mL/s contrast agent iopamidol(iodine content 370 mg/mL)combined filter back projection(FBP)reconstruction technology.CT value,noise,signal-to-noise ratio(SNR),contrast noise ratio(CNR)and image sensitivity(FOM)were measured and compared between the two groups and the quality of the resulting images was evaluated.The CT volumet-ric dose index(CTDIvol)and dose-length product(DLP)were recorded,and the effective dose(ED)was cal-culated.Results There was no statistically significant difference in the vertebral arterial CT value between the two groups(P>0.05),but the noise of the group A was lower than that of the group B(P<0.05),SNR,CNR and FOM of the group A were greater than those of the group B(P<0.05).The image quality of the two groups met the requirements of clinical diagnosis[(4.78±0.41)points vs.(4.85±0.35)points],and there was no statistically significant difference in the subjective evaluation of image quality(P>0.05).The CTDIvol,DLP and ED levels in the group A were lower than those in the group B(P<0.05).The iodine in-takes of contrast medium in the group A and group B were 7.5 g and 18.5 g,respectively,and the iodine flow rates of contrast agent were 0.9 and 1.85 mg/s,respectively,and compared with group B,the iodine intake and iodine flow rate of the group A were decreased by 59.5%and 51.4%,respectively.Conclusion Low tube voltage ATCM and low contrast concentration,dose and injection rate combined with IMR technology can not only ensure the 3DCTA image quality of vertebral artery V3 segment,but also reduce the radiation dose re-ceived by the patients,and reduce the iodine intake and iodine flow rate of contrast agent.
9.Machine Learning Enabled Decoding of Color-coded Droplet Arrays and Its Application in Multiplex Digital Nucleic Acid Analysis
Chinese Journal of Analytical Chemistry 2024;52(2):198-207
To address the throughput limitations of digital nucleic acid analysis,a tricolor combination-based droplet coding technique was developed to achieve multiplex digital nucleic acid analysis with flexible throughput expansibility.To improve the analysis efficiency,a machine learning-based method was further developed for automatic decoding of color-coded droplet array.The machine learning algorithm empowered the computer program to automatically extract the color-position-quantity information of the droplets.By correlating this color-position-quantity of droplets before and after nucleic acid amplification,the proportion of positive droplets for each target was rapidly determined.This droplet decoding strategy was applied to multiplex digital nucleic acid analysis.The experimental results demonstrated that this droplet decoding method was fast and accurate,with a decoding process completed within 2 min.Furthermore,the droplet identification accuracy exceeded 99%.Additionally,the obtained nucleic acid quantification results exhibited a good correlation(R2>0.99)with those reported by a commercial digital PCR instrument.
10.An accurate diagnostic approach for urothelial carcinomas based on novel dual methylated DNA markers in small-volume urine.
Yucai WU ; Di CAI ; Jian FAN ; Chang MENG ; Shiming HE ; Zhihua LI ; Lianghao ZHANG ; Kunlin YANG ; Aixiang WANG ; Xinfei LI ; Yicong DU ; Shengwei XIONG ; Mancheng XIA ; Tingting LI ; Lanlan DONG ; Yanqing GONG ; Liqun ZHOU ; Xuesong LI
Chinese Medical Journal 2024;137(2):232-234


Result Analysis
Print
Save
E-mail