1.Huangqi Jianzhongtang Regulates Polarization of Macrophages M1/M2 and Improves Fat Consumption in Cancer Cachexia Mice
Zhiyan FANG ; Haiyan ZHU ; Wenying HUAI ; Cong HUANG ; Ruocong YANG ; Haiyan YU ; Tiane ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):61-69
ObjectiveTo investigate the effects of Huangqi Jianzhongtang (HQJZ) on macrophage polarization and fat consumption in cancer cachexia (CC) mice. MethodsUltra-performance liquid chromatography-quadrupole/electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS) was used to control the quality of HQJZ. (1) In vitro experiment: HQJZ-containing serum was prepared, and the optimal concentration was determined by cytotoxicity assay. Mouse monocyte-derived macrophages (RAW264.7) were cultured and randomly divided into six groups, including a blank group, a classically activated macrophages (M1) group, an alternatively activated macrophages (M2) group, a HQJZ + blank group, a HQJZ+M1 group, and a HQJZ + M2 group. The relative expression of macrophage marker genes CD86, inducible nitric oxide synthase (iNOS), CD206, and arginase-1 (Arg1) was detected by real-time quantitative polymerase chain reaction (Real-time PCR ). (2) In vivo experiment: Thirty-two BALB/c mice were randomly divided into a control group, a model group, a medroxyprogesterone acetate (MPA) group, and a HQJZ group. Except for the control group, the other mice were injected with CT-26 colon cancer cells to establish a CC model. Mice in the MPA and HQJZ groups were given MPA (0.13 g·kg-1·d-1) or HQJZ (13.13 g·kg-1·d-1) by gavage, respectively, while mice in the control and model groups were given an equal volume of saline by gavage, with interventions continued for 10 d. Real-time PCR was used to detect the expression of macrophage markers (iNOS, Arg1, CD86, CD206) and fat browning-related genes uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor γ (PPARγ) in epididymal adipose tissue. Western blot (WB) was used to detect protein expression levels of UCP1 and PPARγ. Micro-computed tomography (micro-CT) was used to measure residual fat volume, and hematoxylin-eosin (HE) staining was used to assess fat browning and calculate pathological scores. ResultsIn vitro, the dominant effective concentration of HQJZ-containing serum was 12.5%. Real-time PCR results showed that, compared with the blank group, Arg1 expression decreased in the HQJZ+blank group (P<0.05), CD206 showed a downward trend without statistical significance, while iNOS and CD86 expression were significantly increased (P<0.05). Compared with the M1 group, Arg1 and CD206 expression decreased in the HQJZ+M1 group (P<0.05). Compared with the M2 group, CD206 expression decreased in the HQJZ+M2 group (P<0.05), CD86 expression increased significantly (P<0.01). In vivo, Real-time PCR results showed that, compared with the control group, CD86 and CD206 expression levels were significantly increased in the model group (P<0.01). Compared with the model group, CD206 expression in the MPA group was significantly decreased (P<0.01). In the HQJZ group, CD206 was significantly decreased (P<0.01). WB results showed that, compared with the model group, protein expression of UCP1 and PPARγ was significantly reduced in the HQJZ group (P<0.05, P<0.01). micro-CT results showed that the total white fat volume in the HQJZ group was greater than that in the model group (P<0.05). HE staining results showed that pathological scores in the HQJZ group were lower than those in the model group (P<0.05). ConclusionHQJZ may inhibit white adipose tissue browning by promoting macrophage M1 polarization and suppressing M2 polarization, thereby delaying fat consumption in CC mice.
2.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
3.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
4.A bibliometric and visual analysis of the literature published in the journal of Organ Transplantation since its inception
Xi CAO ; Tao HUANG ; Qiwei YANG ; Lin YU ; Xiaowen WANG ; Wenfeng ZHU ; Haoqi CHEN ; Ning FAN ; Genshu WANG
Organ Transplantation 2026;17(1):133-142
Objective To systematically analyze the literature characteristics of Journal of Organ Transplantation since its inception. Methods Using the China National Knowledge Infrastructure (CNKI) academic journal full-text database as the data source, all articles published in the Journal of Organ Transplantation from January 2010 to August 2025 were retrieved. After excluding non-academic papers, a total of 1 568 research papers were included. R language 4.3.0, Bibliometrix package 3.2.1, and Citespace software were used to analyze the number of publications, publishing institutions, authors, keywords and other aspects. Results The number of publications in Journal of Organ Transplantation increased from an average of 82 articles per year in the early years after its inception to 113 articles per year in recent years, a growth of 37.8%. The geographical distribution of publishing institutions covers 32 provinces, cities and autonomous regions nationwide, mainly concentrated in the South China, East China and North China regions, and has now basically covered the central and western regions in recent years. The author collaboration network includes 45 authors distributed across 7 major collaboration clusters, forming a stable multi-level national research system centered on key university-affiliated hospitals. The high-frequency keywords are dominated by "liver transplantation" (425 times) and "kidney transplantation" (396 times). The theme evolution shows a clear three-stage characteristic: initially focusing on clinical technology application, deepening to immune mechanism exploration in the middle stage, and recently (since 2022) focusing on cutting-edge research areas such as xenotransplantation. Conclusions Journal of Organ Transplantation has witnessed the rapid development of China's organ transplantation cause, fully reflecting the research status and trends in China's organ transplantation field, and has provided an important platform for the future development and international cooperation in China's organ transplantation field.
5.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
6.Exploring Multi-target Effect of Erzhiwan on Improving Myocardial Injury in Ovariectomized Mice Based on Non-targeted Metabolomics
Ying YANG ; Jing HU ; Pei LI ; Ruyuan ZHU ; Zhiguo ZHANG ; Haixia LIU ; Yanjing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):74-84
ObjectiveTo explore the target of Erzhiwan in reducing myocardial injury in ovariectomized mice through non-targeted myocardial metabolomics combined with experimental verification. MethodsOvariectomized mouse model was selected, 40 female C57BL/6 mice were randomly divided into sham operation group, model group, estrogen group(estradiol valerate, 1.3×10-4 g·kg-1), Erzhiwan low and high dose groups(3.12, 9.36 g·kg-1), with 8 mice in each group. Each administration group was given the corresponding dose of Erzhiwan by gavage, and the sham operation group and model group were given equal volume of distilled water by gavage for 12 weeks. Echocardiography was used to detect cardiac function, hematoxylin-eosin(HE) staining was used to observe myocardial morphological changes, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of estrogen, N-terminal pro-brain natriuretic peptide(NT-proBNP), hypersensitive troponin T(hs-TnT), total cholesterol(TC), triglyceride(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), interleukin(IL)-1β, IL-18 and tumor necrosis factor-α(TNF-α). The non-targeted metabolomics of mouse myocardium were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the differential metabolites and corresponding metabolic pathways were obtained. The mRNA expression levels of phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in mouse myocardial tissues were detected by real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the protein expression levels of PI3K, Akt, phosphorylated(p)-Akt were detected by Western blot. ResultsCompared with the sham operation group, the model group showed abnormal cardiac function, increased myocardial fiber space, cardiomyocyte atrophy, sarcoplasmic aggregation, and occasional dissolution or rupture of muscle fiber, the level of estrogen in the serum was decreased, the levels of NT-proBNP, hs-TnT, IL-1β, IL-18, TNF-α, TG, TC and LDL-C were increased, and the level of HDL-C was decreased(P<0.01). Compared with the model group, Erzhiwan could increase the level of estrogen, improve the abnormal cardiac function, reduce the pathological injury of myocardial tissue, decrease the levels of myocardial injury markers(NT-proBNP, hs-TnT) and inflammatory factors(IL-1β, IL-18, TNF-α), decrease the levels of TG, TC, LDL-C, and increased the level of HDL-C(P<0.01). The results of non-targeted myocardial metabolomics showed that 31 of the 162 differential metabolites between the model group and sham operation group were significantly adjusted after administration of Erzhiwan, which were mainly glycerol phospholipid metabolites. Pathway enrichment results showed that Erzhiwan mainly affected glycerophospholipid metabolic pathway, PI3K-Akt pathway, cyclic guanosine monophosphate(cGMP)-protein kinase G(PKG) pathway and other metabolic pathways. Compared with the sham operation group, the levels of phosphatidylcholine(PC, 11 types) and phosphatidylethanolamine(PE, 5 types) in mouse myocardial tissue of the model group were increased(P<0.05, P<0.01), and the mRNA and protein expressions of PI3K and p-Akt were decreased(P<0.05, P<0.01). Compared with the model group, the levels of PC(11 types) and PE(5 types) were decreased(P<0.05, P<0.01) in myocardial tissue of Erzhiwan group, the mRNA and protein expressions of PI3K and p-Akt were elevated(P<0.01). ConclusionErzhiwan can alleviate the pathological injury of myocardium in ovariectomized mice, improve the abnormal cardiac function, improve lipid metabolism disorder, and reduce the levels of myocardial injury markers and inflammatory factors, which involves a number of signaling and metabolic pathways in the heart, among which glycerophospholipid metabolism pathway and PI3K/Akt pathway may have key roles.
7.Effect of Yifei Jianpi Prescription on Lipopolysaccharide-induced Lung Immune Inflammatory Response in Rats Based on STAT1/IRF3 Pathway
Hongjuan YANG ; Yaru YANG ; Yujie YANG ; Zhongbo ZHU ; Quan MA ; Yanlin WU ; Hongmei LI ; Xuhui ZHANG ; Xiping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):146-155
ObjectiveTo observe the effect of Yifei Jianpi prescription on the of signal transducer and activator of transcription protein 1 (STAT1)/interferon regulatory factor 3 (IRF3) signaling pathway in a pneumonia model induced by lipopolysaccharide (LPS) and to explore the mechanism of Yifei Jianpi prescription in improving lung immune and inflammatory responses. MethodsSixty male SPF SD rats were used in this study. Ten rats were randomly assigned to the normal control group, and the remaining 50 were instilled with LPS in the trachea to establish a pneumonia model. After successful modeling, the rats were randomly divided into the model group, dexamethasone group (0.5 mg·kg-1), and Yifei Jianpi prescription high-dose (12 mg·kg-1), medium-dose (6 mg·kg-1), and low-dose (3 mg·kg-1) groups, with 10 rats in each group. Treatment was administered once daily, and the normal control and model groups received the same volume of normal saline. After 14 days, flow cytometry was used to detect the classification of whole blood lymphocytes. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), and the content of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), interleukin-6 (IL-6), and interleukin-10 (IL-10) in alveolar lavage fluid (BALF). Hematoxylin-eosin (HE) staining was used to observe lung tissue pathology and score the damage. Thymus weight, spleen weight, and wet-to-dry weight ratio (W/D) were recorded. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of STAT1, IRF3, IL-6, and interferon-alpha (IFN-α) in lung tissues, while Western blot was performed to assess the protein expression of STAT1, IRF3, IL-6, and IFN-α. ResultsCompared with the normal control group, the model group showed significantly increased proportion of B lymphocytes in peripheral blood, decreased proportions of NK cells and CD4+/CD8+ (P<0.05, P<0.01), decreased serum levels of IgG and IgA, significantly increased IgM levels (P<0.01), significantly elevated content of TNF-α, IL-6, and IL-8 in BALF, and significantly decreased IL-10 levels (P<0.01). Lung tissue damage was evident, with significant increases in thymus and spleen weights and a higher W/D ratio (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly upregulated (P<0.05,P<0.01). Compared with the model group, the Yifei Jianpi prescription groups showed significantly reduced proportions of B lymphocytes in peripheral blood, increased proportions of NK cells and CD4+/CD8+ ratios (P<0.05, P<0.01), significantly increased serum levels of IgG and IgA, significantly decreased IgM levels (P<0.05, P<0.01), significantly reduced levels of TNF-α, IL-6, and IL-8 in BALF, and significantly increased IL-10 levels (P<0.01). Lung tissue damage was alleviated, thymus and spleen weights were significantly reduced, and the W/D ratio was markedly decreased (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly downregulated (P<0.05, P<0.01). ConclusionYifei Jianpi prescription can alleviate lung tissue damage and improve immune and inflammatory responses in LPS-induced pneumonia rats. The mechanism may be related to the inhibition of STAT1/IRF3 signaling pathway activation.
8.Cyclocarya paliurus Polysaccharide Inhibits Benign Prostatic Hyperplasia by Reducing 5α-Reductase 2
Qinhui DAI ; Mengxia YAN ; Chen WANG ; Chenjun SHEN ; Chenying JIANG ; Bo YANG ; Huajun ZHAO ; Zhihui ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):107-114
ObjectiveTo investigate the effect and mechanism of polysaccharide in water extract of Cyclocarya paliurus (CPWP) in inhibiting benign prostatic hyperplasia (BPH). MethodsCPWP was obtained by heating reflux, aqueous extraction, alcohol precipitation, and freeze drying. The chemical composition and structural properties of CPWP were analyzed by high performance liquid chromatography with 1-pheny-3-methyl-5-pyrazolone pre-column derivatization and infrared spectroscopy. Male SD rats were randomly assigned into control, model, finasteride (ig 5 mg·kg-1), and low-, medium-, and high-dose (ig 50, 75, 100 mg·kg-1) CPWP groups, with 8 rats in each group. The BPH model was established by subcutaneously injecting propionate testosterone in castrated rats. The rats in the drug intervention groups were administrated with corresponding drugs, and those in the control group were administrated with an equal volume of normal saline each day. After 30 consecutive days, the rats were sacrificed, and the prostate tissue was separated and weighed. The effects of drug interventions on the body weight, prostate wet weight, and prostate index of rats were examined. The prostate tissue was stained with hematoxylin-eosin (HE) for observation of pathological changes. Enzyme-linked immunosorbent assay was employed to measure the level of dihydrotestosterone (DHT), and immunohistochemical staining was used to detect the expression of steroid 5 alpha-reductase 2 (SRD5A2) and Ki67 in the prostate tissue. ResultsCPWP was identified as a saccharide, with characteristic absorption peaks of saccharides. CPWP showed the total sugar content of 44.15% and molecular weight within the range of 5.5-78.8 kDa, being composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose, and arabinose. Compared with the control group, the model group had significantly increased prostate wet weight and prostate index (P<0.01), thick and tall prostate epithelial cells, increased internal wrinkles, papillary expansion into the cavity, an elevation in DHT level in the serum, and up-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.05, P<0.01). Compared with the model group, both the finasteride and CPWP groups showed decreases in prostate wet weight and prostate index (P<0.05, P<0.01), thinned prostate epithelial cells, with only a small portion of internal wrinkles and papillary expansion into the cavity, shortened papillary protrusions, lowered DHT level in the serum, and down-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.01). Moreover, CPWP exerted effects in a dose-dependent manner. ConclusionCPWP inhibits BPH by regulating the expression of SRD5A2.
9.Differentiation and Treatment of Lipid Turbidity Disease Based on Theory of "Spleen Ascending and Stomach Descending"
Yun HUANG ; Wenyu ZHU ; Wei SONG ; Xiaobo ZHANG ; Xin ZHOU ; Lele YANG ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):244-252
Lipid turbidity disease is a metabolic disease featuring lipid metabolism disorders caused by many factors such as social environment, diet, and lifestyle, which is closely related to many diseases in modern medicine, such as hyperlipidemia, obesity, fatty liver, atherosclerosis, metabolic syndrome, and cardiovascular and cerebrovascular diseases, with a wide range of influence and far-reaching harm. According to the Huangdi Neijing, lipid turbidity disease reflects the pathological change of the body's physiologic grease. Grease is the thick part of body fluids, which has the function of nourishing, and it is the initial state and source of important substances in the human body such as brain, marrow, essence, and blood. Once the grease of the human body is abnormal, it can lead to lipid turbidity disease. The Huangdi Neijing also points out the physiological relationship between the transportation and transformation of body fluids and the rise and fall of the spleen and stomach, which can deduce the pathological relationship between the occurrence of lipid turbidity disease and the abnormal rise and fall of the spleen and stomach functions. Lipid turbidity disease is caused by overconsumption of fatty and sweet foods or insufficient spleen and stomach endowments, leading to disorders of the function of promoting clear and reducing turbidity in the spleen and stomach. This leads to the transformation of thick grease in body fluids into lipid turbidity, which accumulates in the body's meridians, blood vessels, skin pores, and organs, forming various forms of metabolic diseases. The research team believed that the pathological basis of lipid turbidity disease was the abnormal rise and fall of the spleen and stomach and the obstruction of the transfer of grease. According to the different locations where lipid turbidity stays, it was divided into four common pathogenesis types: ''inability to distinguish between the clear and turbid, turbid stagnation in the Ying blood'', ''spleen not rising clear, turbid accumulation in the vessels'', ''spleen dysfunction, lipid retention in the pores'', ''spleen failure to transportation and transformation, and grease accumulation in the liver''. According to the pathogenesis, it could be divided into four common syndromes, namely, turbid stagnation in the Ying blood, turbid accumulation in the vessels, lipid retention in the pores, and grease accumulation in the liver, and the corresponding prescriptions were given for syndrome differentiation and treatment, so as to guide clinical differentiation and treatment of the lipid turbidity disease.
10.Mechanism of in Vitro and in vivo Models of Osteoporosis Regulation by Active Ingredients of Traditional Chinese Medicine: A Review
Ming YANG ; Jinji WANG ; Xuefeng ZHUANG ; Xiaolei FANG ; Zhijie ZHU ; Huiwei BAO ; Lijing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):281-289
Osteoporosis is a common bone disease, whose incidence is still on the rise, posing great challenges to patients and society. This review mainly studies the pathogenesis of osteoporosis from the aspects of oxidative stress, inflammatory response, and glucolipotoxicity-induced injury and clarifies the efficacy and mechanism of some active ingredients of traditional Chinese medicine against osteoporosis through the integration of in vitro and in vivo experiments. The experimental results suggest that some active ingredients can improve bone resorption markers and maintain bone homeostasis by modulating inflammation, oxidative stress, etc. These active ingredients regulate osteoporosis through the receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL) pathway, osteoprotegerin (OPG) pathway, Wnt/β-catenin pathway, NF-κB pathway, mitogen-activated protein kinase (MAPK) pathway, adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and oxidative stress pathway. This review provides ideas for the progress of the prevention and treatment of osteoporosis with the active ingredients of traditional Chinese medicine, aiming to provide new potential lead compounds and reference for the development of innovative drugs and clinical therapy for the treatment of osteoporosis.

Result Analysis
Print
Save
E-mail