1.Macrophage efferocytosis:a new target for the treatment of obesity-related metabolic diseases
Fengying YANG ; Yuqing ZHAO ; Huijuan YOU ; Pengyi ZHANG ; Yan CHEN ; Qinglu WANG ; Yingying LIU
Chinese Journal of Tissue Engineering Research 2025;29(2):430-440
BACKGROUND:Dysfunction of macrophage efferocytosis can induce local and systemic inflammatory damage and is associated with a variety of obesity-related metabolic diseases.Moreover,compounds targeting efferocytosis have shown good therapeutic effects. OBJECTIVE:By reviewing the effects of obesity on macrophage efferocytosis,to analyze the key mechanism by which obesity inhibits efferocytosis,to summarize the research progress in compounds targeting efferocytosis to treat obesity-related metabolic diseases,so as to provide new ideas for fully understanding efferocytosis and its relationship with metabolic diseases,aiming to provide new strategies for disease prevention and treatment. METHODS:The English search terms were"efferocytosis,metabolism,obesity,obese,atherosclerosis,non-alcoholic steatohepatitis,neurodegeneration,tumor,osteoarthritis,diabetes,compound,medicine,treatment,"which were used for literature retrieval in PubMed and Web of Science.The Chinese search term was"efferocytosis,"which was used for literature retrieval in CNKI,VIP and WanFang datebases.Ninety-nine papers were finally included in the review analysis after a rigorous screening process. RESULTS AND CONCLUSION:In the process of efferocytosis,the"Find me"and"Eat me"processes involving a large number of apoptotic cell derived factors are mainly regulated by apoptotic cells.The efferocytosis factor involved in cytoskeletal remodeling and digestion are mainly derived from macrophages,which are crucial for efferocytosis activity.These results suggest that the"Find me"and"Eat me"factors mainly reflect the condition of apoptosis,and it is more scientific to select the expression of factors involved in cytoskeletal remodeling and digestion when evaluating the efferocytosis activity of macrophages.Obesity inhibits efferocytosis,and shows an inhibitory effect on most digestive factors,but has a stress-induced activation effect on most"Find me,""Eat me"and cytoskeletal recombination factors,which further indicates the decisive effect of digestive stage on efferocytosis and suggests that it is not reliable for some studies to evaluate the efferocytosis based on the increased expression of"Find me"and"Eat me"factors.Targeting cytokines in the digestive phase may be more effective when discussing future intervention strategies targeting macrophages efferocytosis.The efferocytosis activators of macrophages are effective in the treatment of various metabolic diseases,but the efferocytosis inhibitors in tumor tissue show good anticancer effects,suggesting that the role of efferocytosis should be rationally evaluated according to the characteristics of tissue inflammation.Efferocytosis is a relatively new concept proposed in 2003,with a short research history and complex efferocytosis factors.Current studies on obesity and efferocytosis only involve a tip of the iceberg and most of them are at a superficial level and a large number of scientific experiments are needed to further validate the mechanisms.
2.Concept,Organizational Structure,and Medical Model of the Traditional Chinese Medicine Myocardial Infarction Unit
Jun LI ; Jialiang GAO ; Jie WANG ; Zhenpeng ZHANG ; Xinyuan WU ; Ji WU ; Zicong XIE ; Jingrun CUI ; Haoqiang HE ; Yuqing TAN ; Chunkun YANG
Journal of Traditional Chinese Medicine 2025;66(9):873-877
The traditional Chinese medicine (TCM) myocardial infarction (MI) unit is a standardized, regulated, and continuous integrated care unit guided by TCM theory and built upon existing chest pain centers or emergency care units. This unit emphasizes multidisciplinary collaboration and forms a restructured clinical entity without altering current departmental settings, offering comprehensive diagnostic and therapeutic services with full participation of TCM in the treatment of MI. Its core medical model is patient-centered and disease-focused, providing horizontally integrated TCM-based care across multiple specialties and vertically constructing a full-cycle treatment unit for MI, delivering prevention, treatment, and rehabilitation during the acute, stable, and recovery phases. Additionally, the unit establishes a TCM-featured education and prevention mechanism for MI to guide patients in proactive health management, reduce the incidence of myocardial infarction, and improve quality of life.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
7.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
8.Time-series analysis of impact of ground-level ozone exposure on resident mortality in Hohhot City from 2018 to 2023
Shengjie QIN ; Hairong YANG ; Wulanqimuge ; Yuqing HU ; Ziying ZHAO
Journal of Environmental and Occupational Medicine 2025;42(10):1185-1192
Background Exposure to ozone (O3) is closely associated with an increased risk of mortality in the population, but this association exhibits regional heterogeneity, and relevant research in northern and central-western China is limited. Hohhot, as a typical city in the northern and western region, has seen a significant upward trend in O3 concentrations (an increase of 17.9 μg·m−3 in 2020 compared to 2016). Studies targeting this region can fill the regional research gap. Objective To evaluate the health effects of ground-level O3 exposure on resident mortality in Hohhot from 2018 to 2023. Methods Air quality, meteorological, and mortality data in Hohhot from 2018 to 2023 were collected. A time-series analysis based on Quasi-Poisson generalized additive model (GAM) was employed, controlling for meteorological factors, day-of-week effects, and holiday effects, to assess the impact of O3 on non-accidental mortality, mortality from circulatory system diseases (CSD), and mortality from respiratory system diseases (RSD). Results From 2018 to 2023, the non-accidental, CSD, and RSD mortalities in Hohhot amounted to
9.Analysis and clinical characteristics of SLC26A4 gene mutations in 72 cases of large vestibular aqueduct syndrome.
Yuqing LIU ; Wenyu XIONG ; Yu LU ; Lisong LIANG ; Kejie YANG ; Li LAN ; Wei HAN ; Qing YE ; Min WANG ; Yuan ZHANG ; Fangying TAO ; Zuwei CAO ; Wei HUANG ; Xue YANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(7):603-609
Objective:To explore the genetic and clinical characteristics of Guizhou patients with enlarged vestibular aqueduct(EVA) syndrome through combined SLC26A4 variant analysis and clinical phenotype analysis. Methods:Seventy-two EVA patients underwent comprehensive genetic testing using a multiplex PCR-based deafness gene panel and next-generation sequencing(NGS). The audiological and temporal bone imaging characteristics were compared across mutation subtypes. Results:A total of 27 pathogenic loci of SLC26A4 were detected in 72 patients, including c.919-2A>G in 79.2%(57/72). A novel deletion(c.1703_1707+6del) was discovered. Among 65 cases, truncated mutations were 89.2%(58/65), 52.3%(34/65), 28(43.1%) and 7(10.8%). No significant differences were observed in the midpoint diameter of the vestibular aqueduct and the incidence of incomplete partitioning typeⅡ(IP-Ⅱ) of the cochlea among the three groups of patients. Moreover, there was no difference in the midpoint diameter of different vestibular pipes or the combination with IP-Ⅱ. Conclusion:The most common mutation site of SLC26A4 in EVA patients in Guizhou is c.919-2A>G, though genotype-phenotype correlations remain elusive. The detection of 27 mutation sites and the discovery of new mutation sites suggested the precise diagnostic significance of NGS technology in EVA patients in Guizhou.
Humans
;
Sulfate Transporters
;
Vestibular Aqueduct/abnormalities*
;
Mutation
;
Membrane Transport Proteins/genetics*
;
Hearing Loss, Sensorineural/genetics*
;
Male
;
Female
;
Child
;
Adolescent
;
Child, Preschool
;
Adult
;
Young Adult
;
Phenotype
;
High-Throughput Nucleotide Sequencing
10.Discovery of a novel thiophene carboxamide analogue as a highly potent and selective sphingomyelin synthase 2 inhibitor for dry eye disease therapy.
Jintong YANG ; Yiteng LU ; Kexin HU ; Xinchen ZHANG ; Wei WANG ; Deyong YE ; Mingguang MO ; Xin XIAO ; Xichen WAN ; Yuqing WU ; Shuxian ZHANG ; He HUANG ; Zhibei QU ; Yimin HU ; Yu CAO ; Jiaxu HONG ; Lu ZHOU
Acta Pharmaceutica Sinica B 2025;15(1):392-408
Dry eye disease (DED) is a prevalent and intractable ocular disease induced by a variety of causes. Elevated sphingomyelin (SM) levels and pro-inflammatory cytokines were detected on the ocular surface of DED patients, particularly in the meibomian glands. Sphingomyelin synthase 2 (SMS2), one of the proteins involved in SM synthesis, would light a novel way of developing a DED therapy strategy. Herein, we report the design and optimization of a series of novel thiophene carboxamide derivatives to afford 14l with an improved highly potent inhibitory activity on SM synthesis (IC50, SMS2 = 28 nmol/L). Moreover, 14l exhibited a notable protective effect of anti-inflammation and anti-apoptosis on human corneal epithelial cells (HCEC) under TNF-α-hyperosmotic stress conditions in vitro, with an acceptable ocular specific distribution (corneas and meibomian glands) and pharmacokinetics (PK) profiles (t 1/2, cornea = 1.11 h; t 1/2, meibomian glands = 4.32 h) in rats. Furthermore, 14l alleviated the dry eye symptoms including corneal fluorescein staining scores and tear secretion in a dose-dependent manner in mice. Mechanically, 14l reduced the mRNA expression of Tnf-α, Il-1β and Mmp-9 in corneas, as well as the proportion of very long chain SM in meibomian glands. Our findings provide a new strategy for DED therapy based on selective SMS2 inhibitors.

Result Analysis
Print
Save
E-mail