1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
3.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
4.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
5.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
6.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
7.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
8.Epidemiological characteristics and spatial-temporal clustering of severe fever with thrombocytopenia syndrome in Huai'an City from 2011 to 2024
XIA Wenling ; GAO Qiang ; LI Yang ; CAI Ben ; WAN Chunyu ; CUI Zhizhen ; ZHANG Zheng ; PAN Enchun
Journal of Preventive Medicine 2026;38(1):55-59,65
Objective:
To investigate the epidemiological characteristics and spatial-temporal clustering of severe fever with thrombocytopenia syndrome (SFTS) in Huai'an City, Jiangsu Province from 2011 to 2024, so as to provide a basis for optimizing local SFTS prevention and control strategies, and identifying high-risk areas and key populations.
Methods:
Data on SFTS incidence and deaths in Huai'an City from 2011 to 2024 were collected from the Infectious Disease Reporting Information System of the Chinese Disease Prevention and Control Information System. The reported incidence, mortality, and fatality rates were calculated. Descriptive analysis was performed on temporal, population, and regional distribution. The average annual percent change (AAPC) was used to analyze the trend in the reported incidence of SFTS. Global and local spatial autocorrelation analyses were employed to examine the spatial distribution patterns and spatial association patterns of SFTS incidence while spatio-temporal scanning analyses was used to assess the spatial-temporal clustering of SFTS.
Results:
A total of 337 SFTS cases were reported in Huai'an City from 2011 to 2024, with the reported incidence rising from 0.17/100 000 to 1.88/100 000. There were 20 deaths, with an average annual mortality of 0.03/100 000, and a fatality rate of 5.93%. The incidence showed obvious seasonality, with a peak in May and June (148 cases, accounting for 43.92%). Spring and summer accounted for 107 cases (31.75%) and 159 cases (47.18%), respectively. The reported SFTS cases were mainly male, farmers, and individuals aged ≥41 years, accounting for 56.38%, 79.23%, and 96.74%, respectively. The population distribution of death cases was basically consistent with that of incident cases. Xuyi County was a high-incidence area, with a total of 332 reported cases, accounting for 98.52%. All death cases were reported in this county. Spatial autocorrelation analyses revealed a positive spatial correlation in SFTS incidence from 2019 to 2024, with Moran's I values ranging from 0.214 to 0.336 (all P<0.05). Heqiao Town, Tianquanhu Town, and Guiwu Town in Xuyi County were identified as high-high clustering areas. Spatio-temporal scanning analyses showed that cluster 1 was consistent with the high-high clustering areas, with an aggregation time from the second quarter of 2019 to the second quarter of 2022.
Conclusions
From 2011 to 2024, the reported incidence of SFTS in Huai'an City showed an upward trend, with a high incidence in spring and summer. Males, farmers, and the middle-aged and elderly population were the key populations for prevention and control. Xuyi County was the key area for prevention and control.
9.Efficacy and safety of immune checkpoint inhibitors combined with neoadjuvant chemotherapy in the treatment of early triple-negative breast cancer:a meta-analysis
Zhixuan YANG ; Shuo LI ; Peiyuan WANG ; Hongxin QIE ; Wenlin GONG ; Xiaonan GAO ; Jinglin GAO ; Mingxia WANG
China Pharmacy 2026;37(2):238-243
OBJECTIVE To evaluate the efficacy and safety of immune checkpoint inhibitors (ICIs) combined with neoadjuvant chemotherapy in the treatment of early triple-negative breast cancer (TNBC). METHODS Randomized controlled trials (RCTs) comparing ICIs combined with neoadjuvant chemotherapy (experimental group) versus neoadjuvant chemotherapy alone (control group) were retrieved from PubMed, Cochrane Library, Embase, Web of Science, CNKI, Wanfang Data, and VIP databases, as well as relevant studies published at oncology academic conferences. The search period was from database inception to June 30, 2025. After literature screening, data extraction, and quality assessment, a meta-analysis was performed by using RevMan 5.4 software. RESULTS A total of 6 RCTs involving 3 786 patients were finally included. The meta-analysis results showed that the experimental group had superior event-free survival [HR=0.73, 95%CI (0.62, 0.85), P<0.000 1], overall survival [HR=0.69, 95%CI (0.57, 0.84), P=0.000 3], and pathological complete response (pCR) [OR=1.57, 95%CI (1.37, 1.80), P<0.000 01] compared to the control group. The incidence of ≥grade 3 adverse event (AE), severe AE (SAE), and ≥ grade 3 immune-related adverse event (irAE) in the experimental group was significantly higher than that in the control group. There was no statistically significant difference between the two groups in the incidence of any AE or any irAE (P>0.05). Subgroup analysis revealed that, regardless of programmed cell death ligand 1 expression status (negative or positive),the pCR in the experimental group was significantly higher than that in the control group (P<0.05). Additionally, the pCR of the patients with positive lymph nodes in the experimental group was significantly higher to that in the ontrol group (P<0.05). There was no statistically significant difference in pCR between the two groups with negative lymph nodes (P=0.09). CONCLUSIONS ICIs combined with neoadjuvant chemotherapy can significantly improve event-free survival and overall survival in patients with TNBC, providing patients with long-term survival benefits. However, the risk of ≥ grade 3 AE, SAE and ≥ grade 3 irAE has increased.
10.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.


Result Analysis
Print
Save
E-mail