1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Houshihei San Repairs Skeletal Muscle Injury After Ischaemic Stroke by Regulating Ferroptosis Pathway
Hu QI ; Dan TIAN ; Xiongwei ZHANG ; Zeyang ZHANG ; Yuanlin GAO ; Yanning JIANG ; Xinran MIN ; Jiamin ZOU ; Jiuseng ZENG ; Nan ZENG ; Ruocong YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):1-11
ObjectiveTo investigate the pharmacodynamic effects of Houshihei San (HSHS) recorded with the effects of treating wind and limb heaviness on muscle tissue injury after middle cerebral artery occlusion (MCAO) in rats through the ferroptosis pathway. MethodsThirty SD male rats were selected and randomly grouped as follows: sham, MCAO, deferoxamine mesylate, high-dose HSHS (HSHS-H, 0.54 g·kg-1), and low-dose HSHS (HSHS-L, 0.27 g·kg-1), with 6 rats in each group. A laser scattering system was used to evaluate the stability of the MCAO model, and rats were administrated with corresponding agents by gavage for 7 days. During the administration period, behavioral, imaging and other methods were used to systematically evaluate the skeletal muscle tissue injury after MCAO and the therapeutic effect in each administration group. Hematoxylin-eosin staining was employed to evaluate the cross-section of muscle cells. Subsequently, immunohistochemistry was used to detect tumor suppressor p53 and glutathione peroxidase 4 (GPX4) in the soleus tissue. Western blot was employed to determine the protein levels of p53, GPX4, myogenic differentiation 1 (MyoD1), nuclear factor E2-related factor 2 (Nrf2), Myostatin, solute carrier family 7 member 11 (SLC7A11), muscle ring-finger protein-1 (MuRF1), and muscle atrophy F-box protein (MAFbx) to verify the therapeutic effect in each group. ResultsCompared with the MCAO group, HSHS enhanced the locomotor ability and promoted muscle regeneration, which suggested that the pharmacological effects of HSHS were related to the inhibition of muscle tissue ferroptosis to reduce the expression of muscle atrophy factors. Behavioral and imaging results suggested that compared with the MCAO group, HSHS ameliorated neurological impairments in rats on day 7 (P<0.01), enhanced 5-min locomotor distance and postural control (P<0.01), strengthened grasping power and promoted muscle growth (P<0.01), stabilized skeletal muscle length and weight (P<0.01), and increased the cross-section of muscle cells (P<0.01). Compared with the MCAO group, HSHS promoted the increases in glutathione and superoxide dismutase content and inhibited the increase in malondialdehyde content (P<0.05,P<0.01). Ferroptosis pathway-related assays suggested that HSHS reduced the p53-positive cells and increased the GPX4-positive cells (P<0.01). HSHS ameliorated muscle function decline after stroke by promoting the expression of GPX4, Nrf2, SLC7A11, and MyoD1 and inhibiting the expression of p53, Myostatin, MurRF1, and MAFbx to reduce ferroptosis in the muscle (P<0.01). ConclusionHSHS, prepared with reference to the method in the Synopsis of Golden Chamber, can simultaneously reduce the myolysis and increase the protein synthesis in the skeletal muscle tissue after ischemic stroke by regulating the ferroptosis pathway.
3.Study on Pre-Clinical In-Vitro Test Methods of Unicondylar Knee Prosthesis.
Shu YANG ; Dan HAN ; Wen CUI ; Zhenxian CHEN ; Jinju DING ; Jintao GAO ; Bin LIU
Chinese Journal of Medical Instrumentation 2025;49(1):111-118
Compared with total knee arthroplasty, unicondylar knee replacement has the advantage of preserving the knee tissue structure and motor function to the greatest extent. Pre-clinical in-vitro test is an important tool to evaluate the safety and effectiveness of unicondylar knee prostheses, and it is also a key focus of the product registration process. Through collection, comparison, and analysis of current regulations, technical standards, guidelines, and related research literature, this paper expounds on the relevant research methods for the pre-clinical in-vitrotesting of unicondylar knee prostheses. At the same time, in conjunction with current evaluation requirements and experience, the study discusses the focus of pre-clinical performance research for unicondylar knee prostheses during the registration process to clarify the performance evaluation requirements of this product category. This aims to provide a reference for the pre-clinical performance research of unicondylar knee prostheses and to standardize industry testing standards.
Knee Prosthesis
;
Arthroplasty, Replacement, Knee
;
Humans
;
Prosthesis Design
;
Materials Testing
4.Self-degradable "gemini-like" ionizable lipid-mediated delivery of siRNA for subcellular-specific gene therapy of hepatic diseases.
Qiu WANG ; Bin WAN ; Yao FENG ; Zimeng YANG ; Dan LI ; Fan LIU ; Ya GAO ; Chang LI ; Yanhua LIU ; Yongbing SUN ; Zhonggui HE ; Cong LUO ; Jin SUN ; Qikun JIANG
Acta Pharmaceutica Sinica B 2025;15(6):2867-2883
Tailored lipid nanoparticles (LNPs)-mediated small interfering RNA (siRNA) nanomedicines show promise in treating liver disease, such as acute liver injury (ALI) and non-alcoholic steatohepatitis (NASH). However, constructing LNPs that address biosafety concerns, ensure efficient delivery, and target specific hepatic subcellular fractions has been challenging. To evade above obstacles, we develop three novel self-degradable "gemini-like" ionizable lipids (SS-MA, SS-DC, SS-MH) by incorporating disulfide bonds and modifying the length of ester bond and tertiary amino head. Our findings reveal that the disulfide-bond-bridged LNPs exhibit reduction-responsive drug release, improving both biosafety and siRNA delivery efficiency. Furthermore, the distance of ester bond and tertiary amino head significantly influences the LNPs' pK a, thereby affecting endosomal escape, hemolytic efficiency, absorption capacity of ApoE, uptake efficiency of hepatocytes and liver accumulation. We also develop the modified-mannose LNPs (M-LNP) to target liver macrophages specifically. The optimized M-MH_LNP@TNFα exhibits potential in preventing ALI by decreasing tumor necrosis factor α (TNFα) levels in the macrophages, while MH_LNP@DGAT2 could treat NASH by selectively degrading diacylglycerol O-acyltransferase 2 (DGAT2) in the hepatocytes. Our findings provide new insights into developing novel highly effective and low-toxic "gemini-like" ionizable lipids for constructing LNPs, potentially achieving more effective treatment for hepatic diseases.
5.Corrigendum to "Hydralazine represses Fpn ubiquitination to rescue injured neurons via competitive binding to UBA52" J. Pharm. Anal. 14 (2024) 86-99.
Shengyou LI ; Xue GAO ; Yi ZHENG ; Yujie YANG ; Jianbo GAO ; Dan GENG ; Lingli GUO ; Teng MA ; Yiming HAO ; Bin WEI ; Liangliang HUANG ; Yitao WEI ; Bing XIA ; Zhuojing LUO ; Jinghui HUANG
Journal of Pharmaceutical Analysis 2025;15(4):101324-101324
[This corrects the article DOI: 10.1016/j.jpha.2023.08.006.].
6.Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation.
Hang ZHAO ; Xin MA ; Hao WANG ; Xiao-Jie DING ; Le KUAI ; Jian-Kun SONG ; Zhan ZHANG ; Dan YANG ; Chun-Jie GAO ; Bin LI ; Mi ZHOU
Journal of Integrative Medicine 2025;23(3):309-319
OBJECTIVE:
To assess the safety and topical efficacy of prim-O-glucosylcimifugin (POG) and investigate the molecular mechanisms of its therapeutic effects in atopic dermatitis (AD).
METHODS:
The effects of POG on human keratinocyte cell viability and its anti-inflammatory properties were evaluated using cell counting kit-8 assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Subsequently, the impact of POG on the differentiation of cluster of differentiation (CD) 4+ T cell subsets, including T-helper type (Th) 1, Th2, Th17, and regulatory T (Treg), was examined through in vitro experiments. Network pharmacology analysis was used to elucidate POG's therapeutic mechanisms. Furthermore, the therapeutic potential of topically applied POG was further evaluated in a calcipotriol-induced mouse model of AD. The protein and transcript levels of inflammatory markers, including cytokines, lymphocyte-specific protein tyrosine kinase (Lck) mRNA, and LCK phosphorylation (p-LCK), were quantified using immunohistochemistry, RT-qPCR, and Western blot analysis.
RESULTS:
POG was able to suppress cell proliferation and downregulate the transcription of interleukin 4 (Il4) and Il13 mRNA. In vitro experiments indicated that POG significantly inhibited the differentiation of Th2 cells, whereas it exerted negligible influence on the differentiation of Th1, Th17 and Treg cells. Network pharmacology identified LCK as a key therapeutic target of POG. Moreover, the topical application of POG effectively alleviated skin lesions in the calcipotriol-induced AD mouse models without causing pathological changes in the liver, kidney or spleen tissues. POG significantly reduced the levels of Il4, Il5, Il13, and thymic stromal lymphopoietin (Tslp) mRNA in the AD mice. Concurrently, POG enhanced the expression of p-LCK protein and Lck mRNA.
CONCLUSION
Our research revealed that POG inhibits Th2 cell differentiation by promoting p-LCK protein expression and hence effectively alleviates AD-related skin inflammation. Please cite this article as: Zhao H, Ma X, Wang H, Ding XJ, Kuai L, Song JK, Zhang Z, Yang D, Gao CJ, Li B, Zhou M. Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation. J Integr Med. 2025; 23(3): 309-319.
Dermatitis, Atopic/drug therapy*
;
Animals
;
Humans
;
Cell Differentiation/drug effects*
;
Phosphorylation/drug effects*
;
Mice
;
Th2 Cells/drug effects*
;
Keratinocytes/drug effects*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Calcitriol/analogs & derivatives*
7.Associations of Genetic Risk and Physical Activity with Incident Chronic Obstructive Pulmonary Disease: A Large Prospective Cohort Study.
Jin YANG ; Xiao Lin WANG ; Wen Fang ZHONG ; Jian GAO ; Huan CHEN ; Pei Liang CHEN ; Qing Mei HUANG ; Yi Xin ZHANG ; Fang Fei YOU ; Chuan LI ; Wei Qi SONG ; Dong SHEN ; Jiao Jiao REN ; Dan LIU ; Zhi Hao LI ; Chen MAO
Biomedical and Environmental Sciences 2025;38(10):1194-1204
OBJECTIVE:
To investigate the relationship between physical activity and genetic risk and their combined effects on the risk of developing chronic obstructive pulmonary disease.
METHODS:
This prospective cohort study included 318,085 biobank participants from the UK. Physical activity was assessed using the short form of the International Physical Activity Questionnaire. The participants were stratified into low-, intermediate-, and high-genetic-risk groups based on their polygenic risk scores. Multivariate Cox regression models and multiplicative interaction analyses were used.
RESULTS:
During a median follow-up period of 13 years, 9,209 participants were diagnosed with chronic obstructive pulmonary disease. For low genetic risk, compared to low physical activity, the hazard ratios ( HRs) for moderate and high physical activity were 0.853 (95% confidence interval [ CI]: 0.748-0.972) and 0.831 (95% CI: 0.727-0.950), respectively. For intermediate genetic risk, the HRs were 0.829 (95% CI: 0.758-0.905) and 0.835 (95% CI: 0.764-0.914), respectively. For participants with high genetic risk, the HRs were 0.809 (95% CI: 0.746-0.877) and 0.818 (95% CI: 0.754-0.888), respectively. A significant interaction was observed between genetic risk and physical activity.
CONCLUSION
Moderate or high levels of physical activity were associated with a lower risk of developing chronic obstructive pulmonary disease across all genetic risk groups, highlighting the need to tailor activity interventions for genetically susceptible individuals.
Humans
;
Pulmonary Disease, Chronic Obstructive/epidemiology*
;
Exercise
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Aged
;
Genetic Predisposition to Disease
;
Risk Factors
;
United Kingdom/epidemiology*
;
Incidence
;
Adult
8.Association of gene polymorphisms in microRNA with blood pressure responses to salt and potassium intake
Lan WANG ; Ying CUI ; Yanjie GUO ; Yanni YAO ; Beibei YANG ; Nairong LIU ; Jiaxin WANG ; Panpan LIU ; Mingfei DU ; Guilin HU ; Zejiaxin NIU ; Xi ZHANG ; Dan WANG ; Chao CHU ; Hao JIA ; Yue SUN ; Weihua GAO ; Jianjun MU ; Yang WANG
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(3):435-442
Objective To investigate the relationship of miRNA gene polymorphisms with blood pressure(BP)responses to the sodium and potassium diet intervention.Methods In 2004,we recruited 514 participants from 124 families in seven villages of Baoji,Shaanxi Province,China.All subjects were given a three-day normal diet,followed by a seven-day low-salt diet,a seven-day high-salt diet,and finally a seven-day high-salt and potassium supplementation.A total of 19 miRNA single nucleotide polymorphisms(SNPs)were selected for analysis.Results Throughout the sodium-potassium dietary intervention,the BP of the subjects fluctuated across all phases,showing a decrease during the low-salt period and an increase during the high-salt period,followed by a reduction in BP subsequent to potassium supplementation during the high-salt diet.MiR-210-3p SNP rs 12364149 was significantly associated with systolic BP(SBP),diastolic BP(DBP)and mean arterial pressure(MAP)responses to low-salt diet.MiR-4638-3p SNP rs6601178 was significantly associated with SBP while miR-26b-3p SNP rs115254818 was significantly associated with MAP responses to low-salt intervention.In addition,miR-26b-3p SNP rs115254818 was significantly correlated with SBP,DBP and MAP responses to high-salt intervention.MiR-1307-5p SNPs rs1 1191676 and rs2292807 were associated with SBP and MAP responses to high-salt diet.MiR-4638-3p SNP rs6601178,miR-210-3p SNP rs12364149,miR-382-5p SNP rs4906032 and rs4143957 were significantly associated with SBP response to high-salt diet.In addition,miR-26b-3p SNP rs115254818 was significantly associated with SBP,DBP and MAP responses to potassium supplementation.MiR-1307-5p SNPs rs11191676,rs2292807,and miR-19a-3p SNP rs4284505 were significantly associated with SBP responses to high-salt and potassium supplementation.Conclusion miRNA gene polymorphisms are associated with BP response to sodium and potassium,suggesting that miRNA genes may be involved in the pathophysiological process of salt sensitivity and potassium sensitivity.
9.Application of transcranial direct current stimulation in stroke rehabilitation:a bibliometrics analysis
Bin YANG ; Mingyue LIU ; Dan GAO ; Zhe LI
Chinese Journal of Rehabilitation Theory and Practice 2024;30(6):675-685
Objective To visualize and analyze the researches on transcranial direct current stimulation(tDCS)for stroke rehabilita-tion. Methods The Web of Science core collection and CNKI were searched for literature on the use of tDCS for stroke reha-bilitation,since the establishment of the database until March 31st,2023.The literature was analyzed wtih Cite-Sapce 6.2.R2 in term of disciplines,articles number,countries,keywords and co-citation,etc. Results A total of 732 articles in English and 322 articles in Chinese were included,and the number of articles was on the rise.The country with the largest number of publications was the United States,and the journal with the high-est citation frequency was Stroke.The keywords with high attention in recent years were virtual reality,upper limb and transcranial magnetic stimulation.The clustering words of co-cited literature were aphasia,homeostatic plasticity,and motor recovery,etc. Conclusion The researches about tDCS for stroke rehabilitation are increasing year by year,and the research fields are diversified.The hotspots include rehabilitation for motor and speech,and combination with other therapy,such as repetitive transcranial magnetic stimulation and acupuncture.The combination of tDCS with new rehabilitation protocols such as brain-computer interfaces and virtual reality,as well as the selection of individualized stimula-tion parameters to construct patient-centered tDCS models may be hot in the future.
10.Metabolomic Analysis in Saliva and Different Brain Regions of Older Mice with Postoperative Delirium Behaviors
Xiao LIU ; Ying CAO ; Wan Xiao LIN ; Yang Dan GAO ; Hui Hui MIAO ; Zuo Tian LI
Biomedical and Environmental Sciences 2024;37(2):133-145
Objective Postoperative delirium(POD)has become a critical challenge with severe consequences and increased incidences as the global population ages.However,the underlying mechanism is yet unknown.Our study aimed to explore the changes in metabolites in three specific brain regions and saliva of older mice with postoperative delirium behavior and to identify potential non-invasive biomarkers. Methods Eighteen-month-old male C57/BL6 mice were randomly assigned to the anesthesia/surgery or control group.Behavioral tests were conducted 24 h before surgery and 6,9,and 24 h after surgery.Complement C3(C3)and S100 calcium-binding protein B protein(S100beta)levels were measured in the hippocampus,and a metabolomics analysis was performed on saliva,hippocampus,cortex,and amygdala samples. Results In total,43,33,38,and 14 differential metabolites were detected in the saliva,hippocampus,cortex,and amygdala,respectively."Pyruvate""alpha-linolenic acid"and"2-oleoyl-1-palmitoy-sn-glycero-3-phosphocholine"are enriched in one common pathway and may be potential non-invasive biomarkers for POD.Common changes were observed in the three brain regions,with the upregulation of 1-methylhistidine and downregulation of D-glutamine. Conclusion Dysfunctions in energy metabolism,oxidative stress,and neurotransmitter dysregulation are implicated in the development of POD.The identification of changes in the level of salivary metabolite biomarkers could aid in the development of noninvasive diagnostic methods for POD.

Result Analysis
Print
Save
E-mail