1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Application of artificial intelligence and automated scripts in3D printing brachytherapy
Wentai LI ; Jiandong ZHANG ; Zhihe WANG ; Xiaozhen QI ; Yan DING ; Baile ZHANG ; Wenjun MA ; Yao ZHAI ; Weiwei ZHOU ; Yanan SUN ; Xin ZHANG
Chinese Journal of Radiological Health 2025;34(3):419-425
Objective To explore the efficiency improvement in segmenting neural network with the application of Transformer + U-Net artificial intelligence (AI) and modeling with the application of Python scripts in three-dimensional (3D) printing brachytherapy. Methods A Transformer + U-Net AI neural network model was constructed, and Adam optimizer was used to ensure rapid gradient descent. Computed tomography or magnetic resonance imaging data of patients were standardized and processed as self-made data sets. The training set was used to train AI and the optimal result weight parameters were saved. The test set was used to evaluate the AI ability. Python programming language was used to write an automated script to obtain the output segmentation image and convert it to the STL file for import. The source applicator and needle could be automatically modeled. The time of automatic segmentation and modeling and the time of manual segmentation and modeling were entered by two people, and the difference was verified by paired t-test. Results Dice similarity coefficient (DSC), mean intersection over union (MIOU), and Hausdorff distance (HD95) were used for evaluation. DSC was
5.Role of artificial intelligence in medical image analysis.
Lu WANG ; Shimin ZHANG ; Nan XU ; Qianqian HE ; Yuming ZHU ; Zhihui CHANG ; Yanan WU ; Huihan WANG ; Shouliang QI ; Lina ZHANG ; Yu SHI ; Xiujuan QU ; Xin ZHOU ; Jiangdian SONG
Chinese Medical Journal 2025;138(22):2879-2894
With the emergence of deep learning techniques based on convolutional neural networks, artificial intelligence (AI) has driven transformative developments in the field of medical image analysis. Recently, large language models (LLMs) such as ChatGPT have also started to achieve distinction in this domain. Increasing research shows the undeniable role of AI in reshaping various aspects of medical image analysis, including processes such as image enhancement, segmentation, detection in image preprocessing, and postprocessing related to medical diagnosis and prognosis in clinical settings. However, despite the significant progress in AI research, studies investigating the recent advances in AI technology in the aforementioned aspects, the changes in research hotspot trajectories, and the performance of studies in addressing key clinical challenges in this field are limited. This article provides an overview of recent advances in AI for medical image analysis and discusses the methodological profiles, advantages, disadvantages, and future trends of AI technologies.
Artificial Intelligence
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Neural Networks, Computer
;
Deep Learning
;
Diagnostic Imaging/methods*
6.Design and Implementation of Non-Invasive Hemodynamic Monitoring System Based on Impedance Cardiogram Method.
Fuhao KANG ; Qi YIN ; Yanan LIU ; Lin HUANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(1):80-88
Hemodynamic monitoring can reflect cardiac function and blood perfusion and is an indispensable monitoring method in clinical practice. Invasive hemodynamic monitoring methods represented by the thermodilution method are limited in their clinical application scope because they require vascular cannulation. Non-invasive hemodynamic monitoring has attracted extensive attention from medical companies and clinicians at home and abroad in recent years due to its advantages such as safety, non-invasiveness, continuous monitoring, simple operation, and low cost. This paper designs a non-invasive hemodynamic monitoring system based on the impedance cardiography, including hardware, algorithm, software design, and performance parameter evaluation. Among them, the hardware part mainly includes a differential high-frequency constant current source stimulation circuit, impedance cardiogram signal acquisition, and ECG signal acquisition circuit. Signal processing includes wave filtering, impedance cardiogram signal calibration, and ECG signal and impedance cardiogram signal feature point recognition. According to the collected impedance cardiogram and ECG signals, hemodynamic parameters such as heart rate (HR), stroke volume (SV), cardiac output (CO), stroke index (SI), cardiac index (CI), and cardiac contractility index (ICON) are calculated based on the Nyboer thoracic cylinder model. After testing, the key technical indicators of the system hardware are better than that of the relevant medical device standards. The system was used to collect impedance cardiogram and ECG signal data from 40 volunteers. The calculated HR, SV, and CO, three important hemodynamic indicators, were compared with the ICONCore non-invasive cardiac output monitor of OSYPKA Medical in Germany. Their Pearson correlation coefficients were 0.992 ( P<0.001), 0.948 ( P<0.001), and 0.933 ( P<0.001), respectively, verifying that the designed system has high accuracy and reliability.
Cardiography, Impedance/methods*
;
Humans
;
Hemodynamic Monitoring/methods*
;
Equipment Design
;
Signal Processing, Computer-Assisted
;
Hemodynamics
;
Algorithms
;
Monitoring, Physiologic/methods*
;
Electrocardiography
7.Development of a Microstream End-Tidal Carbon Dioxide Monitoring System with Integrated Gas Circuit.
Yanan LIU ; Xuedong SONG ; Qi YIN ; Fuhao KANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(2):204-211
End-tidal carbon dioxide monitoring is an important means of evaluating human lung function and is widely used in fields such as clinical emergency treatment and cardiopulmonary resuscitation. This paper develops a microstream end-tidal carbon dioxide monitoring system. It adopts an integrated gas circuit design to further reduce the size of the equipment. The system uses the method of calculating the root mean square (RMS) of differential pressure signals to regulate the gas circuit flow, enabling the system to stably operate at a flow state of 30 mL/min. In addition, by simultaneously detecting multiple environmental parameters such as temperature and pressure, the system realizes system state monitoring and gas parameter compensation. The test results show that various indicators of the system meet the requirements of relevant standards, laying a good foundation for subsequent engineering applications.
Carbon Dioxide/analysis*
;
Equipment Design
;
Monitoring, Physiologic/methods*
;
Humans
8.Development of a Multimodal Transcranial Electrical Stimulation System with Integrated Four-Channel EEG Recordings.
Yan HANG ; Chaoyang WANG ; Qi YIN ; Yanan LIU ; Lin HUANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(3):313-322
In order to improve the effect of transcranial electrical stimulation treatment and realize personalized treatment for patients with varying severity levels, this paper designed an integrated four-channel EEG recording multimodal transcranial electrical stimulation system. This system can conduct real-time monitoring on EEG and related characteristic analysis before stimulation, in stimulation, and after stimulation. This enables physicians and researchers to resolve real-time brain states, evaluate transcranial electrical stimulation effect, and then artificially adjust the stimulation parameters. After relevant testing and verification, the system can select four stimulation modes: TACS, TDCS, TPCS and TRNS, which can output the constant stimulation current of 0.03 mA accuracy in the range of ±2 mA and the stimulation frequency of low frequency of 0~4 kHz (precision of 0.01 Hz) and high frequency 50~100 kHz, which can obtain more accurate EEG signals under stimulation interference, demonstrating a good market application prospect.
Electroencephalography/methods*
;
Transcranial Direct Current Stimulation/instrumentation*
;
Humans
;
Equipment Design
9.Sixteen-Channel Multimodal High-Precision Transcranial Electrical Stimulation System Development.
Yan HANG ; Qi YIN ; Lin HUANG ; Fuhao KANG ; Yanan LIU ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(4):435-443
This paper introduces a 16-channel multimodal high-precision transcranial electrical stimulation system specifically for non-invasive brain stimulation. This system added TMCS mixed four traditional stimulation modes with TACS, TDCS, TPCS and TRNS. By designing a compensated high-precision constant current source, the constant stimulation current with an accuracy of 0.03 mA in the range of ±2 mA and the stimulation frequency of 50~200 kHz with low frequency of 0~4 kHz (high frequency of 0.1 Hz) are realized. In TACS stimulation mode, there are five adjustable wave forms: triangular wave, sine wave, sawtooth wave, square wave and mixed wave. The system has dual closed-loop control overcurrent detection and simultaneous real-time electrode contact impedance detection. After relevant tests and verification, the system has good stimulation accuracy, high safety and reliability. Compared with the existing products at home and abroad, it features lower cost, richer stimulation mode and waveforms, demonstrating a certain market application value.
Transcranial Direct Current Stimulation/instrumentation*
;
Equipment Design
;
Humans
10.Astrocytic dopamine D1 receptor modulates glutamatergic transmission and synaptic plasticity in the prefrontal cortex through d-serine.
Yanan YIN ; Jian HU ; Haipeng WU ; Xinyu YANG ; Jingwen QI ; Lang HUANG ; Zhengyi LUO ; Shiyang JIN ; Nengyuan HU ; Zhoucai LUO ; Tong LUO ; Hao CHEN ; Xiaowen LI ; Chunhua YUAN ; Shuji LI ; Jianming YANG ; Yihua CHEN ; Tianming GAO
Acta Pharmaceutica Sinica B 2025;15(9):4692-4710
The prefrontal cortex (PFC) plays a pivotal role in orchestrating higher-order emotional and cognitive processes, a function that depends on the precise modulation of synaptic activity. Although pharmacological studies have demonstrated that dopamine signaling through dopamine D1 receptor (DRD1) in the PFC is essential for these functions, the cell-type-specific and molecular mechanisms underlying the neuromodulatory effects remain elusive. Using cell-type-specific knockout mice and patch-clamp recordings, we investigated the regulatory role of DRD1 on neurons and astrocytes in synaptic transmission and plasticity. Furthermore, we explored the mechanisms by which DRD1 on astrocytes regulate synaptic transmission and plasticity at the cellular level, as well as emotional and cognitive functions at the behavioral level, through two-photon imaging, microdialysis, high-performance liquid chromatography, transcriptome sequencing, and behavioral testing. We found that conditional knockout of the Drd1 in astrocytes (CKOAST) increased glutamatergic synaptic transmission and long-term potentiation (LTP) in the medial prefrontal cortex (mPFC), whereas Drd1 deletion in pyramidal neurons did not affect synaptic transmission. The elevated level of d-serine in the mPFC of CKOAST mice increased glutamatergic transmission and LTP through NMDA receptors. In addition, CKOAST mice exhibited abnormal emotional and cognitive function. Notably, these behavioral changes in CKOAST mice could be reversed through the administration of d-serine degrease to the mPFC. These results highlight the critical role of the astrocytic DRD1 in modulating mPFC synaptic transmission and plasticity, as well as higher brain functions through d-serine, and may shed light on the treatment of mental disorders.

Result Analysis
Print
Save
E-mail