1.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
2.Epidemiological investigation of multidrug-resistant bacterial infections in patients with diabetic foot ulcers
Meirong YANG ; Yan ZHANG ; Yonghan NIU
Journal of Public Health and Preventive Medicine 2025;36(1):156-159
Objective To analyse the distribution characteristics and drug resistance of multidrug-resistant bacteria infections in patients with diabetic foot ulcers, and to investigate the relevant risk factors affecting the infection of multidrug-resistant bacteria in patients with diabetic foot ulcers. Methods We selected 352 patients with diabetic foot ulcers admitted to our hospital from January 2021 to December 2023, and retrospectively collated and analysed the clinical data of all patients, collected the ulcer wound specimens of all patients, analysed the infection of multidrug-resistant bacteria and bacterial resistance, compared the differences in the relevant data of patients with different infections, and analysed the risk factors affecting the patients with diabetic foot ulcers by using multivariate logistic regression model. Multiple logistic regression model was used to analyse the risk factors affecting patients with diabetic foot ulcers infected with multi-drug resistant bacteria. Results A total of 352 patients with diabetic foot ulcers, 20.45% developed multidrug-resistant bacterial infections, and a total of 91 strains of bacteria were detected, with the predominant strains being Staphylococcus aureus (41.76%), Pseudomonas aeruginosa (24.18%) and Enterobacteriaceae (21.98%).Compared with uninfected patients, patients with MDRI had a longer duration of diabetes, longer duration of ulcers, a higher proportion of Wagner grade 3-5, ischaemic ulcers, multiple hospitalisations, combined osteomyelitis, larger ulcers, and a longer duration of antibiotic use (P < 0.05).Multifactorial analysis showed that long duration of diabetes mellitus, high Wagner grading, long duration of ulcer, large ulcer size, multiple hospitalisations, prolonged antibiotic use, and comorbid osteomyelitis were all risk factors for MDRI (P < 0.05). Conclusion Patients with diabetic foot ulcers are at risk of multi-resistant bacterial infections, and longer duration of diabetes mellitus, Wagner grade 3-5, longer duration of ulcers prior to hospitalisation, larger ulcer size, hospitalisation for the same wound >2 times/year, prolonged use of antibiotics prior to hospitalisation, and comorbidity with osteomyelitis can increase the risk of multi-resistant bacterial infections in patients with diabetic foot ulcers, therefore, controlling and reducing multi-resistant bacterial infections is the key to improving the prognosis of patients with diabetic foot ulcers.
3.Key Information Research and Modern Clinical Application of Famous Classical Formula Yanghetang
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Shunxi WANG ; Ziwen WANG ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):238-246
Through data collection and collation combined with bibliometrics, this study conducted a series of textual research on Yanghetang, such as the name and origin, the evolution of prescription composition and modern clinical application. Yanghetang was first recorded in Bencao Yidu of WANG Ang in the Qing dynasty. In addition to Yanghetang, there were 3 bynames of Jiawei Yanghetang, Quanshengji Yanghetang and Zhenjun Yanghetang. Regarding the composition of the formula, a total of 4 versions of Yanghetang were collected. The first version is the 5 medicines version of Cervi Cornus Colla, Rehmanniae Radix Praeparata, Cinnamomi Cortex, Zingiberis Rhizoma and Ephedrae Herba in Bencao Yidu. The second version is the 7 medicines version of Waike Zhengzhi Quanshengji, changing Zingiberis Rhizoma to Zingiberis Rhizoma Praeparatum Carbonisata(ZRPC) and adding Sinapis Semen and Glycyrrhizae Radix et Rhizoma(GRR) on the basis of Bencao Yidu, and most of the Yanghetang is of this version. The third version is the 6 medicines version of Wushi Yifang Huibian, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into ZRPC, and Sinapis Semen is added. The fourth version is the 6 medicines version in Yifang Jiedu, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into Zingiberis Rhizoma Praeparatum, and GRR Praeparata cum Melle is added. Regarding the dose of Yanghetang, the doses of the medicines in Waike Zhengzhi Quanshengji was converted into the modern doses as follows:37.3 g of Rehmanniae Radix Praeparata, 1.87 g of Ephedrae Herba, 11.19 g of Cervi Cornus Colla, 7.46 g of Sinapis Semen, 3.73 g of Cinnamomi Cortex, 3.73 g of GRR, and 1.87 g of ZRPC. The origins of the above medicines are consistent with the 2020 edition of Chinese Pharmacopoeia. The processing specification of Rehmanniae Radix Praeparata is steaming method, ZRPC is ginger charcoal, Sinapis Semen is the fried products, and the rest of the medicines are raw products. The decoction method was verified by the decoction method in Chonglou Yuyao, which is similar in the time, and it is recommended that the above medicines should be added with 600 mL of water, decocted to 100 mL, and taken warmly 30 min after meal. For each dose, it is recommended to use 1-3 doses per day according to the doctor's advice in combination with clinical practice. The diseases involved in the ancient applications involved 42 diseases in 11 departments, including orthopedics, dermatology and gynecology, which were dominated by Yin-cold syndrome. However, the diseases involved in modern research also include 148 related diseases in 10 departments, such as orthopedics, obstetrics and gynecology, which is consistent with the ancient books. In recent years, the research hotspots of Yanghetang have focused on more than 10 fields, including osteoblasts, malignant tumors, wound healing, traditional Chinese medicine fumigation and so on, which are widely used. It is suitable for comprehensive research and development because of its rational formula composition, clear origin, processing and decoction method, and wide clinical application.
4.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
5.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
6.Lower vs. standard starting dose oral roxadustat for treating anemia in Chinese patients with chronic kidney disease on dialysis: A prospective, randomized clinical trial.
Yan TU ; Yan XU ; Li YAO ; Beiru ZHANG ; Tiekun YAN ; Aiping YIN ; Xinzhou ZHANG ; Min YANG ; Jun LIU ; Caili WANG ; Xiaomei PENG ; Jianqin WANG ; Wei NIU ; Wenqing JIANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(19):2520-2522
7.Research progresses on the mechanism of macrophages in tendon bone healing.
Liang WANG ; Yinshuan DENG ; Tao QU ; Chaoming DA ; Yunfei HE ; Rui LIU ; Weimin NIU ; Weishun YAN ; Zhen CHEN ; Shuo LI ; Zhiyun YANG ; Binbin GUO ; Xueqian LAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):183-187
The connection between tendons and bones is called the tendon bone connection. With the continuous improvement of national sports awareness, excessive exercises and the related intensity are prone to damage the tendon bone connection. Tendon bone healing is a complex repair and healing process involving multiple factors, and good tendon bone healing is a prerequisite for its physiological function. The complexity of tendon bone structure also poses great challenges to the repair of tendon bone injuries. In recent years, researches have found that stem cells, growth factors, macrophages, and other factors are closely related to the healing process of tendon bone injuries, among which macrophages play an important role in the healing process. The authors reviewed relevant research literature in recent years and summarized the role of macrophages in tendon bone healing, in order to provide new ideas and directions for treatment strategies to promote tendon bone healing.
Humans
;
Macrophages/metabolism*
;
Wound Healing
;
Animals
;
Tendons/physiology*
;
Bone and Bones/injuries*
;
Tendon Injuries
8.Association between metabolic parameters and erection in erectile dysfunction patients with hyperuricemia.
Guo-Wei DU ; Pei-Ning NIU ; Zhao-Xu YANG ; Xing-Hao ZHANG ; Jin-Chen HE ; Tao LIU ; Yan XU ; Jian-Huai CHEN ; Yun CHEN
Asian Journal of Andrology 2025;27(4):482-487
The relationship between hyperuricemia (HUA) and erectile dysfunction (ED) remains inadequately understood. Given that HUA is often associated with various metabolic disorders, this study aims to explore the multivariate linear impacts of metabolic parameters on erectile function in ED patients with HUA. A cross-sectional analysis was conducted involving 514 ED patients with HUA in the Department of Andrology, Jiangsu Province Hospital of Chinese Medicine (Nanjing, China), aged 18 to 60 years. General demographic information, medical history, and laboratory results were collected to assess metabolic disturbances. Sexual function was evaluated using the 5-item version of the International Index of Erectile Function (IIEF-5) questionnaire. Based on univariate analysis, variables associated with IIEF-5 scores were identified, and the correlations between them were evaluated. The effects of these variables on IIEF-5 scores were further explored by multiple linear regression models. Fasting plasma glucose ( β = -0.628, P < 0.001), uric acid ( β = -0.552, P < 0.001), triglycerides ( β = -0.088, P = 0.047), low-density lipoprotein cholesterol ( β = -0.164, P = 0.027), glycated hemoglobin (HbA1c; β = -0.562, P = 0.012), and smoking history ( β = -0.074, P = 0.037) exhibited significant negative impacts on erectile function. The coefficient of determination ( R ²) for the model was 0.239, and the adjusted R ² was 0.230, indicating overall statistical significance ( F -statistic = 26.52, P < 0.001). Metabolic parameters play a crucial role in the development of ED. Maintaining normal metabolic indices may aid in the prevention and improvement of erectile function in ED patients with HUA.
Humans
;
Male
;
Erectile Dysfunction/metabolism*
;
Hyperuricemia/metabolism*
;
Adult
;
Middle Aged
;
Cross-Sectional Studies
;
Glycated Hemoglobin/metabolism*
;
Blood Glucose/metabolism*
;
Uric Acid/blood*
;
Young Adult
;
Triglycerides/blood*
;
Adolescent
;
Cholesterol, LDL/blood*
;
Penile Erection/physiology*
;
Surveys and Questionnaires
9.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
10.Erratum: Author correction to "PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism" Acta Pharm Sin B 13 (2023) 157-173.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2025;15(4):2297-2299
[This corrects the article DOI: 10.1016/j.apsb.2022.05.019.].


Result Analysis
Print
Save
E-mail