1.Current Status and Challenges of Ultrasound-Guided Ablation Therapy for Liver Cancer
Yan ZHOU ; Jianmin DING ; Yandong WANG ; Xiang JING
Cancer Research on Prevention and Treatment 2025;52(4):274-280
Ultrasound-guided local ablation therapy for liver tumors has extensive clinical application because of its minimal invasiveness, proven effectiveness, low complication rates, and suitability for repeat treatments. Ultrasound-guided interventional therapy has continuously evolved in terms of the following: technological advancements, from the initial utilization of percutaneous ethanol injection to thermal ablation therapies exemplified by radiofrequency ablation and microwave ablation and presently advancing toward emerging techniques such as irreversible electroporation; imaging methods, from conventional ultrasound guidance to contrast-enhanced ultrasound and fusion imaging for precise guidance and assessment; supplementary strategies, from monotherapy to auxiliary method and synergistic therapy; and innovative treatment concepts, from early-stage small hepatocellular carcinoma to intermediate and even large liver cancers. The development of ultrasound-guided local ablation of liver cancers has progressed from an initial phase of rapid advancement to a mature stage characterized by further enhancements. This article provides a comprehensive overview of the status of technical equipment, treatment processes, efficacy, complications, and challenges encountered in ultrasound-guided local ablation for liver tumors, with the objective of offering valuable insights for interventional ultrasound physicians.
2.Hub biomarkers and their clinical relevance in glycometabolic disorders: A comprehensive bioinformatics and machine learning approach.
Liping XIANG ; Bing ZHOU ; Yunchen LUO ; Hanqi BI ; Yan LU ; Jian ZHOU
Chinese Medical Journal 2025;138(16):2016-2027
BACKGROUND:
Gluconeogenesis is a critical metabolic pathway for maintaining glucose homeostasis, and its dysregulation can lead to glycometabolic disorders. This study aimed to identify hub biomarkers of these disorders to provide a theoretical foundation for enhancing diagnosis and treatment.
METHODS:
Gene expression profiles from liver tissues of three well-characterized gluconeogenesis mouse models were analyzed to identify commonly differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA), machine learning techniques, and diagnostic tests on transcriptome data from publicly available datasets of type 2 diabetes mellitus (T2DM) patients were employed to assess the clinical relevance of these DEGs. Subsequently, we identified hub biomarkers associated with gluconeogenesis-related glycometabolic disorders, investigated potential correlations with immune cell types, and validated expression using quantitative polymerase chain reaction in the mouse models.
RESULTS:
Only a few common DEGs were observed in gluconeogenesis-related glycometabolic disorders across different contributing factors. However, these DEGs were consistently associated with cytokine regulation and oxidative stress (OS). Enrichment analysis highlighted significant alterations in terms related to cytokines and OS. Importantly, osteomodulin ( OMD ), apolipoprotein A4 ( APOA4 ), and insulin like growth factor binding protein 6 ( IGFBP6 ) were identified with potential clinical significance in T2DM patients. These genes demonstrated robust diagnostic performance in T2DM cohorts and were positively correlated with resting dendritic cells.
CONCLUSIONS
Gluconeogenesis-related glycometabolic disorders exhibit considerable heterogeneity, yet changes in cytokine regulation and OS are universally present. OMD , APOA4 , and IGFBP6 may serve as hub biomarkers for gluconeogenesis-related glycometabolic disorders.
Machine Learning
;
Humans
;
Computational Biology/methods*
;
Biomarkers/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Animals
;
Mice
;
Gluconeogenesis/physiology*
;
Gene Expression Profiling
;
Transcriptome/genetics*
;
Gene Regulatory Networks/genetics*
;
Clinical Relevance
3.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
4.Suppression of Hepatocellular Carcinoma through Apoptosis Induction by Total Alkaloids of Gelsemium elegans Benth.
Ming-Jing JIN ; Yan-Ping LI ; Huan-Si ZHOU ; Yu-Qian ZHAO ; Xiang-Pei ZHAO ; Mei YANG ; Mei-Jing QIN ; Chun-Hua LU
Chinese journal of integrative medicine 2025;31(9):792-801
OBJECTIVE:
To evaluate the anti-hepatocellular carcinoma (HCC) activity of total alkaloids from Gelsemium elegans Benth. (TAG) in vivo and in vitro and to elucidate their potential mechanisms of action through transcriptomic analysis.
METHODS:
TAG extraction was conducted, and the primary components were quantified using high-performance liquid chromatography (HPLC). The effects of TAG (100, 150, and 200 µg/mL) on various tumor cells, including SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116, were assessed. Effects of TAG on HCC proliferation and apoptosis were detected by colony formation assays and cell stainings. Caspase-3, Bcl-2, and Bax protein levels were detected by Western blotting. In vivo, a tumor xenograft model was developed using H22 cells. Totally 40 Kunming mice were randomly assigned to model, cyclophosphamide (20 mg/kg), TAG low-dose (TAG-L, 0.5 mg/kg), and TAG high-dose (TAG-H, 1 mg/kg) groups, with 10 mice in each group. Tumor volume, body weight, and tumor weight were recorded and compared during 14-day treatment. Immune organ index were calculated. Tissue changes were oberseved by hematoxylin and eosin staining and immunohistochemistry. Additionally, transcriptomic and metabolomic analyses, as well as quatitative real-time polymerase chain reaction (RT-qPCR), were performed to detect mRNA and metabolite expressions.
RESULTS:
HPLC successfully identified the components of TAG extraction. Live cell imaging and analysis, along with cell viability assays, demonstrated that TAG inhibited the proliferation of SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116 cells. Colony formation assays, Hoechst 33258 staining, Rhodamine 123 staining, and Western blotting revealed that TAG not only inhibited HCC proliferation but also promoted apoptosis (P<0.05). In vivo experiments showed that TAG inhibited the growth of solid tumors in HCC in mice (P<0.05). Transcriptomic analysis and RT-qPCR indicated that the inhibition of HCC by TAG was associated with the regulation of the key gene CXCL13.
CONCLUSION
TAG inhibits HCC both in vivo and in vitro, with its inhibitory effect linked to the regulation of the key gene CXCL13.
Animals
;
Apoptosis/drug effects*
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Humans
;
Alkaloids/therapeutic use*
;
Gelsemium/chemistry*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Mice
;
Xenograft Model Antitumor Assays
5.Beneficial Effects of Dendrobium officinale Extract on Insomnia Rats Induced by Strong Light and Noise via Regulating GABA and GABAA Receptors.
Heng-Pu ZHOU ; Jie SU ; Ke-Jian WEI ; Su-Xiang WU ; Jing-Jing YU ; Yi-Kang YU ; Zhuang-Wei NIU ; Xiao-Hu JIN ; Mei-Qiu YAN ; Su-Hong CHEN ; Gui-Yuan LYU
Chinese journal of integrative medicine 2025;31(6):490-498
OBJECTIVE:
To explore the therapeutic effects and underlying mechanisms of Dendrobium officinale (Tiepi Shihu) extract (DOE) on insomnia.
METHODS:
Forty-two male Sprague-Dawley rats were randomly divided into 6 groups (n=7 per group): normal control, model control, melatonin (MT, 40 mg/kg), and 3-dose DOE (0.25, 0.50, and 1.00 g/kg) groups. Rats were raised in a strong-light (10,000 LUX) and -noise (>80 db) environment (12 h/d) for 16 weeks to induce insomnia, and from week 10 to week 16, MT and DOE were correspondingly administered to rats. The behavior tests including sodium pentobarbital-induced sleep experiment, sucrose preference test, and autonomous activity test were used to evaluate changes in sleep and emotions of rats. The metabolic-related indicators such as blood pressure, blood viscosity, blood glucose, and uric acid in rats were measured. The pathological changes in the cornu ammonis 1 (CA1) region of rat brain were evaluated using hematoxylin and eosin staining and Nissl staining. Additionally, the sleep-related factors gamma-aminobutyric acid (GABA), glutamate (GA), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) were measured using enzyme linked immunosorbent assay. Finally, we screened potential sleep-improving receptors of DOE using polymerase chain reaction (PCR) array and validated the results with quantitative PCR and immunohistochemistry.
RESULTS:
DOE significantly improved rats' sleep and mood, increased the sodium pentobarbital-induced sleep time and sucrose preference index, and reduced autonomic activity times (P<0.05 or P<0.01). DOE also had a good effect on metabolic abnormalities, significantly reducing triglyceride, blood glucose, blood pressure, and blood viscosity indicators (P<0.05 or P<0.01). DOE significantly increased the GABA content in hippocampus and reduced the GA/GABA ratio and IL-6 level (P<0.05 or P<0.01). In addition, DOE improved the pathological changes such as the disorder of cell arrangement in the hippocampus and the decrease of Nissel bodies. Seven differential genes were screened by PCR array, and the GABAA receptors (Gabra5, Gabra6, Gabrq) were selected for verification. The results showed that DOE could up-regulate their expressions (P<0.05 or P<0.01).
CONCLUSION
DOE demonstrated remarkable potential for improving insomnia, which may be through regulating GABAA receptors expressions and GA/GABA ratio.
Animals
;
Dendrobium/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Sleep Initiation and Maintenance Disorders/blood*
;
Plant Extracts/therapeutic use*
;
Receptors, GABA-A/metabolism*
;
Noise/adverse effects*
;
Light/adverse effects*
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep/drug effects*
;
Rats
;
Receptors, GABA/metabolism*
6.Three-dimensional Heterogeneity and Intrinsic Plasticity of the Projection from the Cerebellar Interposed Nucleus to the Ventral Tegmental Area.
Chen WANG ; Si-Yu WANG ; Kuang-Yi MA ; Zhao-Xiang WANG ; Fang-Xiao XU ; Zhi-Ying WU ; Yan GU ; Wei CHEN ; Ying SHEN ; Li-Da SU ; Lin ZHOU
Neuroscience Bulletin 2025;41(1):159-164
7.Genetic analysis of transcription factors in dopaminergic neuronal development in Parkinson’s disease
Yuwen ZHAO ; Lixia QIN ; Hongxu PAN ; Tingwei SONG ; Yige WANG ; Xiaoxia ZHOU ; Yaqin XIANG ; Jinchen LI ; Zhenhua LIU ; Qiying SUN ; Jifeng GUO ; Xinxiang YAN ; Beisha TANG ; Qian XU
Chinese Medical Journal 2024;137(4):450-456
Background::Genetic variants of dopaminergic transcription factor-encoding genes are suggested to be Parkinson’s disease (PD) risk factors; however, no comprehensive analyses of these genes in patients with PD have been undertaken. Therefore, we aimed to genetically analyze 16 dopaminergic transcription factor genes in Chinese patients with PD.Methods::Whole-exome sequencing (WES) was performed using a Chinese cohort comprising 1917 unrelated patients with familial or sporadic early-onset PD and 1652 controls. Additionally, whole-genome sequencing (WGS) was performed using another Chinese cohort comprising 1962 unrelated patients with sporadic late-onset PD and 1279 controls.Results::We detected 308 rare and 208 rare protein-altering variants in the WES and WGS cohorts, respectively. Gene-based association analyses of rare variants suggested that MSX1 is enriched in sporadic late-onset PD. However, the significance did not pass the Bonferroni correction. Meanwhile, 72 and 1730 common variants were found in the WES and WGS cohorts, respectively. Unfortunately, single-variant logistic association analyses did not identify significant associations between common variants and PD. Conclusions::Variants of 16 typical dopaminergic transcription factors might not be major genetic risk factors for PD in Chinese patients. However, we highlight the complexity of PD and the need for extensive research elucidating its etiology.
8.Knowledge-embedded spatio-temporal analysis for euploidy embryos identification in couples with chromosomal rearrangements
Fangying CHEN ; Xiang XIE ; Du CAI ; Pengxiang YAN ; Chenhui DING ; Yangxing WEN ; Yanwen XU ; Feng GAO ; Canquan ZHOU ; Guanbin LI ; Qingyun MAI
Chinese Medical Journal 2024;137(6):694-703
Background::The goal of the assisted reproductive treatment is to transfer one euploid blastocyst and to help infertile women giving birth one healthy neonate. Some algorithms have been used to assess the ploidy status of embryos derived from couples with normal chromosome, who subjected to preimplantation genetic testing for aneuploidy (PGT-A) treatment. However, it is currently unknown whether artificial intelligence model can be used to assess the euploidy status of blastocyst derived from populations with chromosomal rearrangement.Methods::From February 2020 to May 2021, we collected the whole raw time-lapse videos at multiple focal planes from in vitro cultured embryos, the clinical information of couples, and the comprehensive chromosome screening results of those blastocysts that had received PGT treatment. Initially, we developed a novel deep learning model called the Attentive Multi-Focus Selection Network (AMSNet) to analyze time-lapse videos in real time and predict blastocyst formation. Building upon AMSNet, we integrated additional clinically predictive variables and created a second deep learning model, the Attentive Multi-Focus Video and Clinical Information Fusion Network (AMCFNet), to assess the euploidy status of embryos. The efficacy of the AMCFNet was further tested in embryos with parental chromosomal rearrangements. The receiver operating characteristic curve (ROC) was used to evaluate the superiority of the model. Results::A total of 4112 embryos with complete time-lapse videos were enrolled for the blastocyst formation prediction task, and 1422 qualified blastocysts received PGT-A ( n = 589) or PGT for chromosomal structural rearrangement (PGT-SR, n = 833) were enrolled for the euploidy assessment task in this study. The AMSNet model using seven focal raw time-lapse videos has the best real-time accuracy. The real-time accuracy for AMSNet to predict blastocyst formation reached above 70% on the day 2 of embryo culture, and then increased to 80% on the day 4 of embryo culture. Combing with 4 clinical features of couples, the AUC of AMCFNet with 7 focal points increased to 0.729 in blastocysts derived from couples with chromosomal rearrangement. Conclusion::Integrating seven focal raw time-lapse images of embryos and parental clinical information, AMCFNet model have the capability of assessing euploidy status in blastocysts derived from couples with chromosomal rearrangement.
9.Research Progress of Gas Raman Spectroscopy Detection Technology
Qi-Fan ZHOU ; Yu LU ; Ao LI ; Chang LIU ; Jia-He ZHANG ; Xi YANG ; Yan HUANG ; Xiang-Wei ZHAO
Chinese Journal of Analytical Chemistry 2024;52(7):925-936
Highly sensitive multiple detection and accurate identification of gases are of great importance in the fields of public safety,environmental protection,health diagnosis and industrial production.However,the traditional means of gas detection have many shortcomings such as low sensitivity,long time-consuming,bulky equipment,cumbersome processes and expensive costs.In recent years,Raman spectroscopy has become a hotspot in the field of gas detection because of its fast,sensitive and non-destructive characteristics,and has been more and more closely combined with artificial intelligence.This paper reviews the progress of Raman spectroscopy in gas detection in recent years,including conventional Raman spectroscopy and enhanced Raman spectroscopy,and also introduces the integration of artificial intelligence algorithms in gas Raman detection technology,and discusses the future development of gas Raman detection.
10.Research Progress on Detection of New Psychoactive Substance Piperazines in vivo
Jin-Ting LIU ; Li-Ying ZHOU ; Jia-Hong XIANG ; Zi-Yi LI ; Wan-Ting XIE ; Ke-Ming YUN ; Yan SHI
Journal of Forensic Medicine 2024;40(3):276-283
Piperazines are a class of new psychoactive substances with hallucinogenic effects that af-fect the central nervous system by affecting the level of monoamine neurotransmitters.Abuse of pipera-zines will produce stimulating and hallucinogenic effects,accompanied by headache,dizziness,anxiety,insomnia,vomiting,chest pain,tachycardia,hypertension and other adverse reactions,and may even cause cardiovascular diseases and multiple organ failure and lead to death,seriously affecting human physical and mental health and public safety.The abuse of new psychoactive substance piperazines has attracted extensive attention from the international community.The study of its pharmacological toxi-cology and analytical methods has become a research hotspot in the field of forensic medicine.This paper reviews the in vivo processes,sample treatment and analytical methods of existing piperazines,in order to provide reference for forensic identification.

Result Analysis
Print
Save
E-mail