1.Processing History and Modern Research of Jianghuanglian: A Review
Ying LI ; Yun WANG ; Zhe JIA ; Lin YAN ; Min JIN ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):275-282
Jianghuanglian is one of the representative processed products of Coptidis Rhizoma for treating cold syndrome with drugs of heat nature, and ginger is used to restrict the bitter cold of Coptidis Rhizoma, which can be traced back to Bojifang, and it is suitable for stagnation of damp-heat in middle-jiao, cold-heat mutual knots and other symptoms. Jianghuanglian retains the alkaloids, phenylpropanoids and flavonoids of Coptidis Rhizoma, and also introduces gingerol components such as 6-gingerol in ginger, which has pharmacological activities such as anti-inflammatory, antibacterial, anti-tumor, and improving gastrointestinal function. The 2020 edition of Chinese Pharmacopoeia and many local processing specifications have included the traditional processing process and quality standards of Jianghuanglian, but the specific process parameters and quality standards are incomplete, which limits the production and clinical application of this processed product. By summarizing the processing history, process research, quality evaluation, pharmacodynamic and medicinal property changes and application of Jianghuanglian in the past 20 years, there are differences in the processing methods and standards in various provinces and cities, which are mainly reflected in the preparation method, dosage, processing process and quantitative standards of ginger juice. In addition, there are also certain differences in the changes of the main components of Jianghuanglian prepared from ginger or dried ginger, as well as their efficacy and medicinal properties. The research on the processing process of Jianghuanglian plays an important role in improving its quality standards, and this review can provide a reference for improving the quality evaluation system of Jianghuanglian.
2.Prognostic Significance of KMT2D Gene Mutation and Its Co-mutated Genes in Patients with Diffuse Large B-Cell Lymphoma
Mutibaier·MIJITI ; Xiaolong QI ; Renaguli·ABULAITI ; Wenxin TIAN ; Sha LIU ; Weiyuan MA ; Zengsheng WANG ; Li AN ; Min MAO ; Muhebaier·ABUDUER ; Yan LI
Cancer Research on Prevention and Treatment 2025;52(2):127-132
Objective To explore the clinical characteristics of patients with diffuse large B-cell lymphoma (DLBCL) accompanied with KMT2D gene mutation and the impact of its co-mutated genes on prognosis. Methods Clinical data of 155 newly diagnosed DLBCL patients were obtained. The second-generation sequencing method was used to detect 475 hotspot genes, including KMT2D mutation. Patients were divided into the KMT2D mutation group and KMT2D wild-type group based on the presence or absence of KMT2D gene mutation. Clinical characteristics, differences in co-mutated genes, and survival differences between the two groups were compared. Results The frequency of KMT2D mutation was 31%, which is predominantly observed in elderly patients (P=0.07) and less in the double-expressor phenotype (P=0.07). Compared with the KMT2D wild-type group, KMT2D gene mutation was associated with higher co-mutation rates of CDKN2A (OR=2.82, P=0.01) and BCL2 (OR=3.84, P=0.016), while being mutually exclusive with MYC gene mutation (OR=0.11, P=0.013). In univariate survival analysis, no statistically significant difference in overall survival (OS) was found between the KMT2D mutation group and the wild-type group (P=0.54). Further analysis of the prognostic significance of KMT2D with other gene mutations indicated that patients with KMT2DmutBTG2mut had poorer OS than those with KMT2Dwt BTG2mut (P=0.07) and KMT2Dwt BTG2wt (P=0.05). On the contrary, patients with KMT2Dmut CD79Bmut had better OS than those with KMT2Dmut CD79Bwt (P=0.09), with no prognostic impact observed for other co-mutated genes. Multivariate Cox regression analysis revealed that Ann Arbor stages Ⅲ and Ⅳ (HR=2.751, 95%CI: 1.169-6.472, P=0.02), elevated LDH levels (HR=2.461, 95%CI: 1.396-4.337, P=0.002), Ki-67 index>80% (HR=1.875, 95%CI: 1.066-3.299, P=0.029), and KMT2DmutBTG2mut(HR=4.566, 95%CI: 1.348-15.471, P=0.015) were independent risk factors for OS in patients with DLBCL (P<0.05). Conclusion DLBCL patients with KMT2D mutation often have multiple gene mutations, among which patients with a co-mutated BTG2 gene have poor prognosis.
3.Invasion and Metastasis in Colorectal Cancer Mediated by Traditional Chinese Medicine via Cell Signaling Pathway: A Review
Min GUO ; Wenyan YU ; Naicheng ZHU ; Yuwei YAN ; Chen ZHONG ; Xiudan CHEN ; Nanxin LI ; Guojuan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):323-330
Colorectal cancer is a common and malignant tumor in the digestive tract. Invasion and metastasis of cancer cells are key factors leading to the high mortality rate and postoperative recurrence of colorectal cancer. Chemotherapy is the main treatment method for preventing recurrence of this disease. However, there are many toxic side effects in clinical application, which seriously hinder the treatment process. Therefore, it is imperative to search for efficient and low-toxicity drugs. Traditional Chinese medicine (TCM) has a long history of treating colorectal cancer and offers advantages such as safety, effectiveness, multiple targets, multiple pathways and minimal toxic side effects, which have made it increasingly popular worldwide. According to TCM, the pathogenesis of colorectal cancer is rooted in both deficiency and excess. TCM formulas mainly focus on tonifying the body to address the invasion and metastasis of colorectal cancer, such as Jianpi compound, Jianpi Xiaoai decoction, and Bushen Jiedu Sanjie decoction. TCM monomers, such as emodin, berberine, and tanshinone, mainly focus on clearing heat and removing toxin, circulating blood and transforming stasis, and resolving swelling and dispersing nodules. Signaling pathways play a crucial role for analyzing invasion and metastasis, and research has shown that pathways such as Wnt/β-catenin, phosphatidylinositol-3 kinase/protein kinase (PI3K/Akt), Janus kinase 2/signal transduction and transcription activating factor 3 (JAK2/STAT3), nuclear factors-κB (NF-κB), vascular endothelial growth factor (VEGF) play important roles in the invasion and metastasis of colorectal cancer. The invasion and metastasis of colorectal cancer can be inhibited via regulating the key proteins and related factors in these pathways. In this review, we searched various literature databases, such as PubMed, China National Knowledge Infrastructure (CNKI), and VIP, using keywords such as "colorectal cancer", "signaling pathway", "invasion and metastasis", and "traditional Chinese medicine", to summarize and analyze the relevant pathways of TCM compounds and monomers against invasion and metastasis of colorectal cancer published in the past five years. The review aims to provide new insights and references for in-depth research on the therapy for invasion and metastasis of colorectal cancer and new drug development.
4.Mineralogical studies on iron-containing mineral medicines, Haematitum and Limonitum.
Min LU ; Xiao-Fei WANG ; Cheng-Cheng WANG ; Jing-Xu CHEN ; Hang-Jie ZHU ; Juan LI ; Yan CAO
China Journal of Chinese Materia Medica 2025;50(5):1179-1186
Haematitum and Limonitum are two iron-containing mineral medicines included in the 2020 edition of the Chinese Pharmacopoeia. They have similar main components and major differences in their property, flavor, channel tropism, and clinical uses. In this study, we investigated the surface properties, mineral composition, mineral dissociation, elemental composition, and iron state of Haematitum and Limonitum to explore their mineralogical differences. Scanning electron microscopy(SEM), specific surface and porosity analyzer, X-ray diffractometer(XRD), X-ray photoelectron spectrometer(XPS), and advanced mineral identification and characterization system(AMICS) were used to analyze the mineralogy of Haematitum and Limonitum. The results showed that Haematitum had an angular surface with granular attachments and a specific surface area of 17.04 m~2·g~(-1). In comparison, Limonitum had a smooth and flat surface with a bundled acicular crystal structure and a specific surface area of 46.29 m~2·g~(-1). Haematitum consists of 31 detectable minerals containing 18 elements, with the major element, iron(44.5% Fe~(2+) and 55.5% Fe~(3+)) distributed in 17 minerals, including hematite, iron oxide, knebelite, siderite, and magnesioferrite. Limonitum consists of 32 detectable minerals containing 17 elements, with the major element, iron(14.5% Fe~(2+) and 85.5% Fe~(3+)) distributed in 19 minerals, including limonite, iron oxide, chlorite, and knebelite. In summary, the elemental composition of Haematitum and Limonitum does not differ greatly, but there are large differences in the mineral composition and iron state. The large specific surface area and strong adsorption capacity of Limonitum may be one of the mechanisms of its anti-diarrheal action. The Fe_2O_3 and illite contained in Haematitum and Limonitum may be the key substances for their hemostasis effects. The mineralogical differences are expected to provide a reference for explaining the scientific connotation of mineral medicine and laying a material foundation for studying its mechanism of action.
Iron/analysis*
;
Minerals/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
X-Ray Diffraction
;
Microscopy, Electron, Scanning
;
Photoelectron Spectroscopy
5.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
6.Network pharmacology and molecular docking explore mechanism of Croci Stigma in treating immune checkpoint inhibitor-associated myocarditis.
Jing YAN ; Qing-Qing CAI ; Yu LI ; Hua-Min ZHANG ; Fang-Bo ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2515-2525
This study investigated the mechanism of Croci Stigma in treating immune checkpoint inhibitor(ICI)-associated myocarditis based on network pharmacology and molecular docking. Network pharmacology was employed to screen the active ingredients and molecular targets of Croci Stigma in treating ICI-associated myocarditis. The "drug-ingredient-target-disease" network and protein-protein interaction network were constructed to screen the key ingredients and core targets. Gene Ontology functional enrichment analysis showed that the mechanism was related to the regulation of inflammation and apoptosis. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the treatment was related to the advanced glycation end product-receptor for advanced glycation end products(AGE-RAGE) signaling pathway. Molecular docking result showed that crocins had close associations with RAC-alpha serine/threonine-protein kinase 1(AKT1), signal transducer and activator of transcription 3, and matrix metalloproteinase 9. Crocins were then selected as the therapeutic drug. The mouse model of ICI-associated myocarditis was established by subcutaneous injection of porcine cardiac myosin combined with intraperitoneal injection of pembrolizumab. The results suggested that Croci Stigma reduced the spleen index but had no effect on the heart index. The electrocardiogram showed that Croci Stigma increased the heart rate and shortened PR and QRS intervals. Echocardiographic data indicated that Croci Stigma increased the left ventricular stroke volume, cardiac output, ejection fraction, and fractional shortening. Hematoxylin-eosin and Masson staining results showed that Croci Stigma decreased the number of inflammatory cells infiltrating in the myocardium and alleviated myocardial fibrosis. Enzyme-linked immunosorbent assay results showed that Croci Stigma decreased the serum levels of inflammatory cytokines including tumor necrosis factor-alpha, interleukin-6, interleukin-12, and regulated on activation, normal T-cell expressed and secreted and lowered the levels of creatine kinase and creatine kinase isoenzyme MB. Biochemical data suggested that Croci Stigma inhibited the activities of superoxide dismutase and lactate dehydrogenase. Western blot result showed that Croci Stigma regulated the expression of myocardial AKT. The findings demonstrate that Croci Stigma may regulate AKT expression to effectively protect the cardiac tissue from ICI-associated myocarditis through antagonizing immune responses and inflammation, inhibiting oxidative stress, alleviating cardiac fibrosis, relieving cardiac block, and improving the cardiac function.
Animals
;
Molecular Docking Simulation
;
Myocarditis/metabolism*
;
Immune Checkpoint Inhibitors/adverse effects*
;
Mice
;
Network Pharmacology
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Humans
;
Protein Interaction Maps/drug effects*
7.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
8.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
9.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
10.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female

Result Analysis
Print
Save
E-mail